Zafar Iqbal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1635143/publications.pdf

Version: 2024-02-01

687363 996975 15 634 13 15 citations h-index g-index papers 15 15 15 636 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Dithienopyrrolobenzothiadiazole-based organic dyes for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 15365-15376.	10.3	90
2	Phenothiazine-based dyes with bilateral extension of π-conjugation for efficient dye-sensitized solar cells. Dyes and Pigments, 2013, 96, 722-731.	3.7	82
3	Trilateral Ï∈-conjugation extensions of phenothiazine-based dyes enhance the photovoltaic performance of the dye-sensitized solar cells. Dyes and Pigments, 2016, 124, 63-71.	3.7	7 5
4	Effect of the linkage location in double branched organic dyes on the photovoltaic performance of DSSCs. Journal of Materials Chemistry A, 2015, 3, 1333-1344.	10.3	72
5	Novel dithieno[3,2-b:2′,3′-d]pyrrole-based organic dyes with high molar extinction coefficient for dye-sensitized solar cells. Organic Electronics, 2013, 14, 2071-2081.	2.6	58
6	Molecular design of the diketopyrrolopyrrole-based dyes with varied donor units for efficient dye-sensitized solar cells. Journal of Power Sources, 2014, 271, 455-464.	7.8	43
7	Anti-recombination organic dyes containing dendritic triphenylamine moieties for high open-circuit voltage of DSSCs. Dyes and Pigments, 2013, 99, 74-81.	3.7	35
8	Impact of hydroxy and octyloxy substituents of phenothiazine based dyes on the photovoltaic performance. Dyes and Pigments, 2013, 99, 299-307.	3.7	33
9	Influence of spatial arrangements of π-spacer and acceptor of phenothiazine based dyes on the performance of dye-sensitized solar cells. Organic Electronics, 2013, 14, 2662-2672.	2.6	33
10	Synthesis of double D–A branched organic dyes employing indole and phenoxazine as donors for efficient DSSCs. Tetrahedron, 2014, 70, 6296-6302.	1.9	33
11	Impact of the position isomer of the linkage in the double D–A branch-based organic dyes on the photovoltaic performance. Dyes and Pigments, 2014, 104, 89-96.	3.7	25
12	Synthesis of novel sensitizers with a linear conjugated di(1-benzothieno)[3,2-b:2′,3′-d]pyrrole unit for dye-sensitized solar cells. Dyes and Pigments, 2019, 162, 89-96.	3.7	21
13	Synthesis and photovoltaic performance of dihydrodibenzoazepine-based sensitizers with additional lateral anchor. Dyes and Pigments, 2013, 99, 1072-1081.	3.7	13
14	Effects of various heteroatom donor species on the photophysical, electrochemical and photovoltaic performance of dye-sensitized solar cells. Electrochimica Acta, 2018, 290, 303-311.	5.2	13
15	Effect of structural optimization on the photovoltaic performance of dithieno[3,2-b:2′,3′-d]pyrrole-based dye-sensitized solar cells. RSC Advances, 2017, 7, 35598-35607.	3.6	8