Brent van der Heyden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1635068/publications.pdf

Version: 2024-02-01

22 papers 488 citations

932766 10 h-index 713013 21 g-index

22 all docs $\begin{array}{c} 22 \\ \text{docs citations} \end{array}$

times ranked

22

664 citing authors

#	Article	IF	CITATIONS
1	Autosegmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017. Medical Physics, 2018, 45, 4568-4581.	1.6	169
2	Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy. Physics and Imaging in Radiation Oncology, 2020, 13, 1-6.	1.2	95
3	Monte Carlo proton dose calculations using a radiotherapy specific dual-energy CT scanner for tissue segmentation and range assessment. Physics in Medicine and Biology, 2018, 63, 115008.	1.6	29
4	Dual-energy CT for automatic organs-at-risk segmentation in brain-tumor patients using a multi-atlas and deep-learning approach. Scientific Reports, 2019, 9, 4126.	1.6	29
5	Clinical evaluation of a novel CT image reconstruction algorithm for direct dose calculations. Physics and Imaging in Radiation Oncology, 2017, 2, 11-16.	1.2	18
6	The impact of dual energy CT imaging on dose calculations for pre-clinical studies. Radiation Oncology, 2017, 12, 181.	1.2	17
7	The influence of respiratory motion on dose delivery in a mouse lung tumour irradiation using the 4D MOBY phantom. British Journal of Radiology, 2017, 90, 20160419.	1.0	16
8	Automated CT-derived skeletal muscle mass determination in lower hind limbs of mice using a 3D U-Net deep learning network. Journal of Applied Physiology, 2020, 128, 42-49.	1.2	15
9	A Monte Carlo based scatter removal method for non-isocentric cone-beam CT acquisitions using a deep convolutional autoencoder. Physics in Medicine and Biology, 2020, 65, 145002.	1.6	13
10	Automatic multiatlas based organ at risk segmentation in mice. British Journal of Radiology, 2019, 92, 20180364.	1.0	11
11	VOXSI: A voxelized single- and dual-energy CT scenario generator for quantitative imaging. Physics and Imaging in Radiation Oncology, 2018, 6, 47-52.	1.2	10
12	The effect of different image reconstruction techniques on pre-clinical quantitative imaging and dual-energy CT. British Journal of Radiology, 2019, 92, 20180447.	1.0	10
13	Murine <i>vs</i> human tissue compositions: implications of using human tissue compositions for photon energy absorption in mice. British Journal of Radiology, 2019, 92, 20180454.	1.0	9
14	Modelling of the focal spot intensity distribution and the off-focal spot radiation in kilovoltage x-ray tubes for imaging. Physics in Medicine and Biology, 2020, 65, 025002.	1.6	9
15	Deep Learning Based Automated Orthotopic Lung Tumor Segmentation in Whole-Body Mouse CT-Scans. Cancers, 2021, 13, 4585.	1.7	9
16	On the determination of planning target margins due to motion for mice lung tumours using a four-dimensional MOBY phantom. British Journal of Radiology, 2019, 92, 20180445.	1.0	7
17	Exploring the feasibility of a clinical proton beam with an adaptive aperture for pre-clinical research. British Journal of Radiology, 2019, 92, 20180446.	1.0	6
18	Artificial intelligence supported single detector multi-energy proton radiography system. Physics in Medicine and Biology, 2021, 66, 105001.	1.6	6

#	Article	IF	CITATIONS
19	A comparison study between single- and dual-energy CT density extraction methods for neurological proton monte carlo treatment planning. Acta Oncol $ ilde{A}^3$ gica, 2020, 59, 171-179.	0.8	5
20	Virtual monoenergetic micro-CT imaging in mice with artificial intelligence. Scientific Reports, 2022, 12, 2324.	1.6	3
21	The potential application of dual-energy subtraction radiography for COVID-19 pneumonia imaging. British Journal of Radiology, 2021, 94, 20201384.	1.0	2
22	Deep learning for dose assessment in radiotherapy by the super-localization of vaporized nanodroplets in high frame rate ultrasound imaging. Physics in Medicine and Biology, 2022, , .	1.6	0