Zheling Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1634766/publications.pdf

Version: 2024-02-01

	279798	345221
2,653	23	36
citations	h-index	g-index
20	20	4170
38	38	4173
docs citations	times ranked	citing authors
	citations 38	2,653 23 citations h-index 38 38

#	Article	IF	CITATIONS
1	Mechanisms of reinforcement of PVA-Based nanocomposites by hBN nanosheets. Composites Science and Technology, 2022, 218, 109131.	7.8	10
2	Interfacial energy dissipation in bio-inspired graphene nanocomposites. Composites Science and Technology, 2022, 219, 109216.	7.8	9
3	Controlling and Monitoring Crack Propagation in Monolayer Graphene Single Crystals. Advanced Functional Materials, 2022, 32, .	14.9	4
4	Printable and Wearable Graphene-Based Strain Sensor With High Sensitivity for Human Motion Monitoring. IEEE Sensors Journal, 2022, 22, 13937-13944.	4.7	7
5	The coplanar graphene oxide/graphite heterostructure-based electrodes for electrochemical supercapacitors. Carbon, 2022, 197, 163-170.	10.3	4
6	Understanding the dual function of oxygen-containing groups in fabricating PANi electrodes and Zn-PANi battery. Electrochimica Acta, 2022, 427, 140836.	5.2	6
7	Interlayer and interfacial stress transfer in hBN nanosheets. 2D Materials, 2021, 8, 035058.	4.4	13
8	Fundamental Insights into Graphene Strain Sensing. Nano Letters, 2021, 21, 833-839.	9.1	13
9	PMMA-grafted graphene nanoplatelets to reinforce the mechanical and thermal properties of PMMA composites. Carbon, 2020, 157, 750-760.	10.3	56
10	Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale, 2020, 12, 2228-2267.	5.6	222
11	Reinforcement of Polymer-Based Nanocomposites by Thermally Conductive and Electrically Insulating Boron Nitride Nanotubes. ACS Applied Nano Materials, 2020, 3, 364-374.	5.0	18
12	Twist and Bend in Van Der Waals Materials and 2D Stacked Heterostructures. Microscopy and Microanalysis, 2020, 26, 856-858.	0.4	0
13	Self-assembly of a layered two-dimensional molecularly woven fabric. Nature, 2020, 588, 429-435.	27.8	74
14	Mechanisms of Liquid-Phase Exfoliation for the Production of Graphene. ACS Nano, 2020, 14, 10976-10985.	14.6	157
15	Electronic devices based on solution-processed two-dimensional materials., 2020,, 351-384.		6
16	Strain engineering in monolayer WS ₂ and WS ₂ nanocomposites. 2D Materials, 2020, 7, 045022.	4.4	40
17	Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics. ACS Applied Materials & Distribution (1988) 11, 32225-32234.	8.0	174
18	Interfacial stress transfer in strain engineered wrinkled and folded graphene. 2D Materials, 2019, 6, 045026.	4.4	32

#	Article	IF	CITATIONS
19	Quantification of gas permeability of epoxy resin composites with graphene nanoplatelets. Composites Science and Technology, 2019, 184, 107875.	7.8	9
20	Negative Gauge Factor Piezoresistive Composites Based on Polymers Filled with MoS ₂ Nanosheets. ACS Nano, 2019, 13, 6845-6855.	14.6	52
21	Self-supported NiMoO4@CoMoO4 core/sheath nanowires on conductive substrates for all-solid-state asymmetric supercapacitors. Journal of Electroanalytical Chemistry, 2019, 846, 113153.	3.8	29
22	Hybrid poly(ether ether ketone) composites reinforced with a combination of carbon fibres and graphene nanoplatelets. Composites Science and Technology, 2019, 175, 60-68.	7.8	52
23	Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors. Chemical Engineering Journal, 2019, 366, 550-559.	12.7	170
24	A single step strategy to fabricate graphene fibres via electrochemical exfoliation for micro-supercapacitor applications. Electrochimica Acta, 2019, 299, 645-653.	5.2	35
25	The taxonomy of graphite nanoplatelets and the influence of nanocomposite processing. Carbon, 2019, 142, 99-106.	10.3	16
26	Long-range oriented graphene-like nanosheets with corrugated structure. Chemical Communications, 2018, 54, 13543-13546.	4.1	3
27	Fabrication of a Graphene-Based Paper-Like Electrode for Flexible Solid-State Supercapacitor Devices. Journal of the Electrochemical Society, 2018, 165, A3481-A3486.	2.9	27
28	Anomalous twin boundaries in two dimensional materials. Nature Communications, 2018, 9, 3597.	12.8	46
29	Electrically conductive GNP/epoxy composites for out-of-autoclave thermoset curing through Joule heating. Composites Science and Technology, 2018, 164, 304-312.	7.8	52
30	Realizing the theoretical stiffness of graphene in composites through confinement between carbon fibers. Composites Part A: Applied Science and Manufacturing, 2018, 113, 311-317.	7.6	22
31	Effect of functional groups on the agglomeration of graphene in nanocomposites. Composites Science and Technology, 2018, 163, 116-122.	7.8	51
32	Nanocomposites of graphene nanoplatelets in natural rubber: microstructure and mechanisms of reinforcement. Journal of Materials Science, 2017, 52, 9558-9572.	3.7	41
33	Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science, 2016, 354, 1257-1260.	12.6	676
34	The role of interlayer adhesion in graphene oxide upon its reinforcement of nanocomposites. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150283.	3.4	23
35	Effect of the orientation of graphene-based nanoplatelets upon the Young's modulus of nanocomposites. Composites Science and Technology, 2016, 123, 125-133.	7.8	137
36	Deformation of Wrinkled Graphene. ACS Nano, 2015, 9, 3917-3925.	14.6	143

ZHELING LI

#	Article	IF	CITATIONS
37	Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy. Carbon, 2015, 88, 215-224.	10.3	80
38	Interfacial Stress Transfer in Graphene Oxide Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2013, 5, 456-463.	8.0	144