Zheling Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1634766/publications.pdf Version: 2024-02-01

ZHELING

#	Article	lF	CITATIONS
1	Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science, 2016, 354, 1257-1260.	12.6	676
2	Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale, 2020, 12, 2228-2267.	5.6	222
3	Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics. ACS Applied Materials & amp; Interfaces, 2019, 11, 32225-32234.	8.0	174
4	Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors. Chemical Engineering Journal, 2019, 366, 550-559.	12.7	170
5	Mechanisms of Liquid-Phase Exfoliation for the Production of Graphene. ACS Nano, 2020, 14, 10976-10985.	14.6	157
6	Interfacial Stress Transfer in Graphene Oxide Nanocomposites. ACS Applied Materials & Interfaces, 2013, 5, 456-463.	8.0	144
7	Deformation of Wrinkled Graphene. ACS Nano, 2015, 9, 3917-3925.	14.6	143
8	Effect of the orientation of graphene-based nanoplatelets upon the Young's modulus of nanocomposites. Composites Science and Technology, 2016, 123, 125-133.	7.8	137
9	Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy. Carbon, 2015, 88, 215-224.	10.3	80
10	Self-assembly of a layered two-dimensional molecularly woven fabric. Nature, 2020, 588, 429-435.	27.8	74
11	PMMA-grafted graphene nanoplatelets to reinforce the mechanical and thermal properties of PMMA composites. Carbon, 2020, 157, 750-760.	10.3	56
12	Electrically conductive GNP/epoxy composites for out-of-autoclave thermoset curing through Joule heating. Composites Science and Technology, 2018, 164, 304-312.	7.8	52
13	Negative Gauge Factor Piezoresistive Composites Based on Polymers Filled with MoS ₂ Nanosheets. ACS Nano, 2019, 13, 6845-6855.	14.6	52
14	Hybrid poly(ether ether ketone) composites reinforced with a combination of carbon fibres and graphene nanoplatelets. Composites Science and Technology, 2019, 175, 60-68.	7.8	52
15	Effect of functional groups on the agglomeration of graphene in nanocomposites. Composites Science and Technology, 2018, 163, 116-122.	7.8	51
16	Anomalous twin boundaries in two dimensional materials. Nature Communications, 2018, 9, 3597.	12.8	46
17	Nanocomposites of graphene nanoplatelets in natural rubber: microstructure and mechanisms of reinforcement. Journal of Materials Science, 2017, 52, 9558-9572.	3.7	41
18	Strain engineering in monolayer WS ₂ and WS ₂ nanocomposites. 2D Materials, 2020, 7, 045022.	4.4	40

ZHELING LI

#	Article	IF	CITATIONS
19	A single step strategy to fabricate graphene fibres via electrochemical exfoliation for micro-supercapacitor applications. Electrochimica Acta, 2019, 299, 645-653.	5.2	35
20	Interfacial stress transfer in strain engineered wrinkled and folded graphene. 2D Materials, 2019, 6, 045026.	4.4	32
21	Self-supported NiMoO4@CoMoO4 core/sheath nanowires on conductive substrates for all-solid-state asymmetric supercapacitors. Journal of Electroanalytical Chemistry, 2019, 846, 113153.	3.8	29
22	Fabrication of a Graphene-Based Paper-Like Electrode for Flexible Solid-State Supercapacitor Devices. Journal of the Electrochemical Society, 2018, 165, A3481-A3486.	2.9	27
23	The role of interlayer adhesion in graphene oxide upon its reinforcement of nanocomposites. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150283.	3.4	23
24	Realizing the theoretical stiffness of graphene in composites through confinement between carbon fibers. Composites Part A: Applied Science and Manufacturing, 2018, 113, 311-317.	7.6	22
25	Reinforcement of Polymer-Based Nanocomposites by Thermally Conductive and Electrically Insulating Boron Nitride Nanotubes. ACS Applied Nano Materials, 2020, 3, 364-374.	5.0	18
26	The taxonomy of graphite nanoplatelets and the influence of nanocomposite processing. Carbon, 2019, 142, 99-106.	10.3	16
27	Interlayer and interfacial stress transfer in hBN nanosheets. 2D Materials, 2021, 8, 035058.	4.4	13
28	Fundamental Insights into Graphene Strain Sensing. Nano Letters, 2021, 21, 833-839.	9.1	13
29	Mechanisms of reinforcement of PVA-Based nanocomposites by hBN nanosheets. Composites Science and Technology, 2022, 218, 109131.	7.8	10
30	Quantification of gas permeability of epoxy resin composites with graphene nanoplatelets. Composites Science and Technology, 2019, 184, 107875.	7.8	9
31	Interfacial energy dissipation in bio-inspired graphene nanocomposites. Composites Science and Technology, 2022, 219, 109216.	7.8	9
32	Printable and Wearable Graphene-Based Strain Sensor With High Sensitivity for Human Motion Monitoring. IEEE Sensors Journal, 2022, 22, 13937-13944.	4.7	7
33	Electronic devices based on solution-processed two-dimensional materials. , 2020, , 351-384.		6
34	Understanding the dual function of oxygen-containing groups in fabricating PANi electrodes and Zn-PANi battery. Electrochimica Acta, 2022, 427, 140836.	5.2	6
35	Controlling and Monitoring Crack Propagation in Monolayer Graphene Single Crystals. Advanced Functional Materials, 2022, 32, .	14.9	4
36	The coplanar graphene oxide/graphite heterostructure-based electrodes for electrochemical supercapacitors. Carbon, 2022, 197, 163-170.	10.3	4

Zheling Li

#	Article	IF	CITATIONS
37	Long-range oriented graphene-like nanosheets with corrugated structure. Chemical Communications, 2018, 54, 13543-13546.	4.1	3
38	Twist and Bend in Van Der Waals Materials and 2D Stacked Heterostructures. Microscopy and Microanalysis, 2020, 26, 856-858.	0.4	0