Markus Antonietti

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1634391/markus-antonietti-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

288 85 39,013 195 h-index g-index citations papers 12.2 44,444 297 7.95 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
288	Pickering emulgels reinforced with host-guest supramolecular inclusion complexes for high fidelity direct ink writing <i>Materials Horizons</i> , 2022 ,	14.4	3
287	Azide-Alkyne Click Chemistry over a Heterogeneous Copper-Based Single-Atom Catalyst. <i>ACS Catalysis</i> , 2022 , 12, 2947-2958	13.1	8
286	Enabling High Loading in Single-Atom Catalysts on Bare Substrate with Chemical Scissors by Saturating the Anchoring Sites <i>Small</i> , 2022 , e2200073	11	3
285	Red edge effect and chromoselective photocatalysis with amorphous covalent triazine-based frameworks <i>Nature Communications</i> , 2022 , 13, 2171	17.4	2
284	Enabling High Loading in Single-Atom Catalysts on Bare Substrate with Chemical Scissors by Saturating the Anchoring Sites (Small 19/2022). <i>Small</i> , 2022 , 18, 2270098	11	1
283	On the photopolymerization of mevalonic lactone methacrylate: exposing the potential of an overlooked monomer. <i>Polymer Chemistry</i> , 2021 , 13, 139-146	4.9	2
282	A Reanalysis of the Diverse Sodium Species in Carbon Anodes for Sodium Ion Batteries: A Thermodynamic View. <i>Advanced Energy Materials</i> , 2021 , 11, 2102489	21.8	7
281	Acetic Anhydride Polymerization as a Pathway to Functional Porous Organic Polymers and Their Application in Acid B ase Catalysis. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 2588-2597	4.3	6
280	Enhanced Organic Photocatalysis in Confined Flow through a Carbon Nitride Nanotube Membrane with Conversions in the Millisecond Regime. <i>ACS Nano</i> , 2021 , 15, 6551-6561	16.7	13
279	Upgrading poly(styrene-co-divinylbenzene) beads: Incorporation of organomodified metal-free semiconductor graphitic carbon nitride through suspension photopolymerization to generate photoactive resins. <i>Journal of Applied Polymer Science</i> , 2021 , 138, 50879	2.9	2
278	Ligand-Metal Charge Transfer Induced Adjustment of Textural Properties Controls the Performance of Single-Atom Catalysts during Photocatalytic Degradation. <i>ACS Applied Materials & Materials amp; Interfaces</i> , 2021 , 13, 25858-25867	9.5	11
277	"Giant" Nitrogen Uptake in Ionic Liquids Confined in Carbon Pores. <i>Journal of the American Chemical Society</i> , 2021 , 143, 9377-9384	16.4	8
276	Electrochemical activation of C-H by electron-deficient WC nanocrystals for simultaneous alkoxylation and hydrogen evolution. <i>Nature Communications</i> , 2021 , 12, 3882	17.4	1
275	Synthesis of Polymer Janus Particles with Tunable Wettability Profiles as Potent Solid Surfactants to Promote Gas Delivery in Aqueous Reaction Media. <i>ACS Applied Materials & Company: Interfaces</i> , 2021 , 13, 32510-32519	9.5	6
274	Photocatalytic Water Splitting Reaction Catalyzed by Ion-Exchanged Salts of Potassium Poly(heptazine imide) 2D Materials. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 13749-13758	3.8	6
273	Unidirectional ion transport in nanoporous carbon membranes with a hierarchical pore architecture. <i>Nature Communications</i> , 2021 , 12, 4650	17.4	5
272	Unconventional Photocatalysis in Conductive Polymers: Reversible Modulation of PEDOT:PSS Conductivity by Long-Lived Poly(Heptazine Imide) Radicals. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 7436-7443	16.4	9

(2020-2021)

271	Unkonventionelle Photokatalyse in leitfligen Polymeren: Reversible Modulation der Leitfligkeit von PEDOT:PSS durch langlebige Polyheptazinimid-Radikale. <i>Angewandte Chemie</i> , 2021 , 133, 7512-7520) ^{3.6}	3
270	Sustainable Cathodes for Lithium-Ion Energy Storage Devices Based on Tannic Acidlloward Ecofriendly Energy Storage. <i>Advanced Sustainable Systems</i> , 2021 , 5, 2000206	5.9	8
269	New (and Old) Monomers from Biorefineries to Make Polymer Chemistry More Sustainable. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2000485	4.8	13
268	All-organic Z-scheme photoreduction of CO2 with water as the donor of electrons and protons. <i>Applied Catalysis B: Environmental</i> , 2021 , 285, 119773	21.8	9
267	Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. <i>Chemical Society Reviews</i> , 2021 , 50, 6221-6239	58.5	26
266	Mizoroki⊞eck type reactions and synthesis of 1,4-dicarbonyl compounds by heterogeneous organic semiconductor photocatalysis. <i>Green Chemistry</i> , 2021 , 23, 2017-2024	10	5
265	Insights into the sodiation mechanism of hard carbon-like materials from electrochemical impedance spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 11488-11500	3.6	6
264	Photocatalytic (Het)arylation of C(sp3)⊞ Bonds with Carbon Nitride. <i>ACS Catalysis</i> , 2021 , 11, 1593-1603	13.1	27
263	Influence of Pore Architecture and Chemical Structure on the Sodium Storage in Nitrogen-Doped Hard Carbons. <i>Small</i> , 2021 , 17, e2006767	11	14
262	Chemical Vapor Deposition of Highly Conjugated, Transparent Boron Carbon Nitride Thin Films. <i>Advanced Science</i> , 2021 , 8, e2101602	13.6	7
261	Chromoselective Synthesis of Sulfonyl Chlorides and Sulfonamides with Potassium Poly(heptazine imide) Photocatalyst. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20543-20550	16.4	11
260	Carbon Nitride Thin Films as All-In-One Technology for Photocatalysis. <i>ACS Catalysis</i> , 2021 , 11, 11109-11	136	13
259	Accelerated Anti-Markovnikov Alkene Hydrosilylation with Humic-Acid-Supported Electron-Deficient Platinum Single Atoms. <i>Angewandte Chemie</i> , 2021 , 133, 24422	3.6	0
258	Accelerated Anti-Markovnikov Alkene Hydrosilylation with Humic-Acid-Supported Electron-Deficient Platinum Single Atoms. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 24220-2	4226	8
257	Ultrahigh water sorption on highly nitrogen doped carbonaceous materials derived from uric acid. Journal of Colloid and Interface Science, 2021 , 602, 880-888	9.3	2
256	Multisite PCET with photocharged carbon nitride in dark. <i>Exploration</i> , 2021 , 1, 20210063		5
255	Rediscovering Forgotten Members of the Graphene Family. Accounts of Materials Research, 2020, 1, 117	'- 1 1. ≩ 2	7
254	Potassium Poly(Heptazine Imide): Transition Metal-Free Solid-State Triplet Sensitizer in Cascade Energy Transfer and [3+2]-cycloadditions. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15061-15	5668	46

253	Bioinspired Ionic Sensory Systems: The Successor of Electronics. <i>Advanced Materials</i> , 2020 , 32, e2000218	324	35
252	Advantages in Using Inexpensive CO2 To Favor Photocatalytic Oxidation of Benzylamines. <i>ACS Catalysis</i> , 2020 , 10, 7336-7342	13.1	26
251	Ultrathin 2D Graphitic Carbon Nitride on Metal Films: Underpotential Sodium Deposition in Adlayers for Sodium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9067-9073	16.4	37
250	Synthesis of carbon frameworks with N, O and S-lined pores from gallic acid and thiourea for superior CO2 adsorption and supercapacitors. <i>Science China Materials</i> , 2020 , 63, 748-757	7.1	14
249	Dichloromethylation of enones by carbon nitride photocatalysis. <i>Nature Communications</i> , 2020 , 11, 1387	' 17.4	41
248	Photoactive Graphitic Carbon Nitride-Based Gel Beads As Recyclable Photocatalysts. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 3346-3354	4.3	10
247	A Single Cu-Center Containing Enzyme-Mimic Enabling Full Photosynthesis under CO Reduction. <i>ACS Nano</i> , 2020 , 14, 8584-8593	16.7	73
246	Graphitic Carbon Nitride Stabilizers Meet Microfluidics: From Stable Emulsions to Photoinduced Synthesis of Hollow Polymer Spheres. <i>Small</i> , 2020 , 16, e2001180	11	16
245	Artificial Humic Acids: Sustainable Materials against Climate Change. Advanced Science, 2020, 7, 1902992	213.6	26
244	Synthesis of a Porous CN-Derived Framework with High Yield by Gallic Acid Cross-Linking Using Salt Melts. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 13127-13133	9.5	7
243	Covalent triazine framework/carbon nanotube hybrids enabling selective reduction of CO2 to CO at low overpotential. <i>Green Chemistry</i> , 2020 , 22, 3095-3103	10	8
242	Photo-Ni-Dual-Catalytic C(sp2)[I(sp3) Cross-Coupling Reactions with Mesoporous Graphitic Carbon Nitride as a Heterogeneous Organic Semiconductor Photocatalyst. <i>ACS Catalysis</i> , 2020 , 10, 3526-3532	13.1	35
241	Cascade Kinetics in an Enzyme-Loaded Aqueous Two-Phase System. <i>Langmuir</i> , 2020 , 36, 1401-1408	4	15
240	Shine Bright Like a Diamond: New Light on an Old Polymeric Semiconductor. <i>Advanced Materials</i> , 2020 , 32, e1908140	24	36
239	Improving Artificial Photosynthesis over Carbon Nitride by Gas-Liquid-Solid Interface Management for Full Light-Induced CO Reduction to C and C Fuels and O. <i>ChemSusChem</i> , 2020 , 13, 1730-1734	8.3	33
238	Nickel on nitrogen-doped carbon pellets for continuous-flow hydrogenation of biomass-derived compounds in water. <i>Green Chemistry</i> , 2020 , 22, 2755-2766	10	25
237	Bioinformation transformation: From ionics to quantum ionics. Science China Materials, 2020, 63, 167-17	7 .1	8
236	Graphitic carbon nitride and polymers: a mutual combination for advanced properties. <i>Materials Horizons</i> , 2020 , 7, 762-786	14.4	76

235	Conjugation of artificial humic acids with inorganic soil matter to restore land for improved conservation of water and nutrients. <i>Land Degradation and Development</i> , 2020 , 31, 884-893	4.4	9
234	An Artificial Somatic Reflex Arc. <i>Advanced Materials</i> , 2020 , 32, e1905399	24	64
233	Guanine-Derived Porous Carbonaceous Materials: Towards C N. <i>ChemSusChem</i> , 2020 , 13, 6643-6650	8.3	9
232	Electrochemical N Reduction to Ammonia Using Single Au/Fe Atoms Supported on Nitrogen-Doped Porous Carbon. <i>ACS Applied Energy Materials</i> , 2020 , 3, 10061-10069	6.1	12
231	Let a Hundred Polymers Bloom: Tunable Wetting of Photografted Polymer-Carbon Nitride Surfaces. <i>Chemistry of Materials</i> , 2020 , 32, 7284-7291	9.6	20
230	On the Possibility of Helium Adsorption in Nitrogen Doped Graphitic Materials. <i>Scientific Reports</i> , 2020 , 10, 5832	4.9	5
229	Boron Carbon Nitride Thin Films: From Disordered to Ordered Conjugated Ternary Materials. Journal of the American Chemical Society, 2020 , 142, 20883-20891	16.4	26
228	Colloidal properties of the metal-free semiconductor graphitic carbon nitride. <i>Advances in Colloid and Interface Science</i> , 2020 , 283, 102229	14.3	21
227	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216	2.6	36
226	Polymer-Derived Heteroatom-Doped Porous Carbon Materials. <i>Chemical Reviews</i> , 2020 , 120, 9363-9419	9 68.1	196
225	Controlling pore size and pore functionality in sp2-conjugated microporous materials by precursor chemistry and salt templating. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 21680-21689	13	9
224	p-Xylene from 2,5-dimethylfuran and acrylic acid using zeolite in a continuous flow system. <i>Green Chemistry</i> , 2020 , 22, 7398-7405	10	17
223	Responsive Janus and Cerberus emulsions via temperature-induced phase separation in aqueous polymer mixtures. <i>Journal of Colloid and Interface Science</i> , 2020 , 575, 88-95	9.3	21
222	Visible-light induced emulsion photopolymerization with carbon nitride as a stabilizer and photoinitiator. <i>Polymer Chemistry</i> , 2019 , 10, 5315-5323	4.9	33
221	Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles. <i>Nature Communications</i> , 2019 , 10, 4380	17.4	117
220	Poly(Ionic Liquid) Nanoparticles Selectively Disrupt Biomembranes. <i>Advanced Science</i> , 2019 , 6, 1801602	2 13.6	7
219	Grafting Polymers onto Carbon Nitride via Visible-Light-Induced Photofunctionalization. <i>Macromolecules</i> , 2019 , 52, 4989-4996	5.5	21
218	A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation. <i>Science of the Total Environment</i> , 2019 , 686, 1140-1151	10.2	56

217	Understanding the Charge Storage Mechanism to Achieve High Capacity and Fast Ion Storage in Sodium-Ion Capacitor Anodes by Using Electrospun Nitrogen-Doped Carbon Fibers. <i>Advanced Functional Materials</i> , 2019 , 29, 1902858	15.6	54
216	Designing Defective Crystalline Carbon Nitride to Enable Selective CO2 Photoreduction in the Gas Phase. <i>Advanced Functional Materials</i> , 2019 , 29, 1900093	15.6	151
215	Halogenation of aromatic hydrocarbons by halide anion oxidation with poly(heptazine imide) photocatalyst. <i>Applied Catalysis B: Environmental</i> , 2019 , 248, 211-217	21.8	34
214	Robust Carbon Nitride-Based Thermoset Coatings for Surface Modification and Photochemistry. <i>ACS Applied Materials & District Materials</i>	9.5	29
213	Carbon nitride photocatalyzes regioselective aminium radical addition to the carbonyl bond and yields N-fused pyrroles. <i>Nature Communications</i> , 2019 , 10, 945	17.4	48
212	Controlling the strength of interaction between carbon dioxide and nitrogen-rich carbon materials by molecular design. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 2819-2827	5.8	20
211	Three-Phase Photocatalysis for the Enhanced Selectivity and Activity of CO Reduction on a Hydrophobic Surface. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 14549-14555	16.4	136
210	Electron Deficient Monomers that Optimize Nucleation and Enhance the Photocatalytic Redox Activity of Carbon Nitrides. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 14950-14954	16.4	74
209	Photo-Driven Ion Transport for a Photodetector Based on an Asymmetric Carbon Nitride Nanotube Membrane. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12574-12579	16.4	53
208	A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes. <i>Beilstein Journal of Nanotechnology</i> , 2019 , 10, 1316-1323	3	11
207	Organic semiconductor photocatalyst can bifunctionalize arenes and heteroarenes. <i>Science</i> , 2019 , 365, 360-366	33.3	235
206	Metal-Free Visible-Light-Induced Dithiol E ne Clicking via Carbon Nitride to Valorize 4-Pentenoic Acid as a Functional Monomer. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 17574-17579	8.3	18
205	Ion Transport in Nanofluidic Devices for Energy Harvesting. <i>Joule</i> , 2019 , 3, 2364-2380	27.8	109
204	Electron Deficient Monomers that Optimize Nucleation and Enhance the Photocatalytic Redox Activity of Carbon Nitrides. <i>Angewandte Chemie</i> , 2019 , 131, 15092-15096	3.6	12
203	Ionic Carbon Nitrides in Solar Hydrogen Production and Organic Synthesis: Exciting Chemistry and Economic Advantages. <i>ChemCatChem</i> , 2019 , 11, 6166-6176	5.2	34
202	The Rise of Bioinspired Ionotronics. <i>Advanced Intelligent Systems</i> , 2019 , 1, 1900073	6	25
201	Vanillin decorated chitosan as electrode material for sustainable energy storage <i>RSC Advances</i> , 2019 , 9, 4591-4598	3.7	18
200	Artificial light-driven ion pump for photoelectric energy conversion. <i>Nature Communications</i> , 2019 , 10, 74	17.4	94

199	Formation and Properties of Poly(Ionic Liquid)-Carbene Nanogels Containing Individually Stabilized Silver Species. <i>Chemistry - A European Journal</i> , 2018 , 24, 5754-5759	4.8	3
198	The Concept of "Noble, Heteroatom-Doped Carbons," Their Directed Synthesis by Electronic Band Control of Carbonization, and Applications in Catalysis and Energy Materials. <i>Advanced Materials</i> , 2018 , 30, e1706836	24	102
197	Toward Ultimate Control of Radical Polymerization: Functionalized Metal Drganic Frameworks as a Robust Environment for Metal-Catalyzed Polymerizations. <i>Chemistry of Materials</i> , 2018 , 30, 2983-2994	9.6	34
196	Tuning the Adsorption Energy of Methanol Molecules Along Ni-N-Doped Carbon Phase Boundaries by the MottBchottky Effect for Gas-Phase Methanol Dehydrogenation. <i>Angewandte Chemie</i> , 2018 , 130, 2727-2731	3.6	14
195	Continuous Heterogeneous Photocatalysis in Serial Micro-Batch Reactors. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9976-9979	16.4	90
194	Tuning the Adsorption Energy of Methanol Molecules Along Ni-N-Doped Carbon Phase Boundaries by the Mott-Schottky Effect for Gas-Phase Methanol Dehydrogenation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2697-2701	16.4	58
193	Photooxidation of N-acylhydrazones to 1,3,4-oxadiazoles catalyzed by heterogeneous visible-light-active carbon nitride semiconductor. <i>Applied Catalysis B: Environmental</i> , 2018 , 228, 97-102	21.8	32
192	Splitting Water by Electrochemistry and Artificial Photosynthesis: Excellent Science but a Nightmare of Translation?. <i>Chemical Record</i> , 2018 , 18, 969-972	6.6	10
191	Poly(ionic liquid) binders as ionic conductors and polymer electrolyte interfaces for enhanced electrochemical performance of water splitting electrodes. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 1446-	1 5 481	6
190	Toward the Experimental Understanding of the Energy Storage Mechanism and Ion Dynamics in Ionic Liquid Based Supercapacitors. <i>Advanced Energy Materials</i> , 2018 , 8, 1800026	21.8	92
189	A "waiting" carbon nitride radical anion: a charge storage material and key intermediate in direct C-H thiolation of methylarenes using elemental sulfur as the "S"-source. <i>Chemical Science</i> , 2018 , 9, 3584	-3 5 91	69
188	Tough high modulus hydrogels derived from carbon-nitride via an ethylene glycol co-solvent route. <i>Soft Matter</i> , 2018 , 14, 2655-2664	3.6	24
187	Nanofluidic Ion Transport and Energy Conversion through Ultrathin Free-Standing Polymeric Carbon Nitride Membranes. <i>Angewandte Chemie</i> , 2018 , 130, 10280-10283	3.6	24
186	Photoredox Catalytic Organic Transformations using Heterogeneous Carbon Nitrides. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15936-15947	16.4	215
185	Breaking the Limits of Ionic Liquid-Based Supercapacitors: Mesoporous Carbon Electrodes Functionalized with Manganese Oxide Nanosplotches for Dense, Stable, and Wide-Temperature Energy Storage. <i>Advanced Functional Materials</i> , 2018 , 28, 1801298	15.6	60
184	Single-Site Gold Catalysts on Hierarchical N-Doped Porous Noble Carbon for Enhanced Electrochemical Reduction of Nitrogen. <i>Small Methods</i> , 2018 , 2, 1800202	12.8	169
183	Ionothermal Synthesis of TriazineHeptazine-Based Copolymers with Apparent Quantum Yields of 60 % at 420 nm for Solar Hydrogen Production from Bea Water (1997) Angewandte Chemie, 2018, 130, 9516-95	526	49
182	Template- and Metal-Free Synthesis of Nitrogen-Rich Nanoporous "Noble" Carbon Materials by Direct Pyrolysis of a Preorganized Hexaazatriphenylene Precursor. <i>Angewandte Chemie -</i> International Edition 2018, 57, 10765-10770	16.4	60

181	Ordered Mesoporous Carbons with High Micropore Content and Tunable Structure Prepared by Combined Hard and Salt Templating as Electrode Materials in Electric Double-Layer Capacitors. <i>Advanced Sustainable Systems</i> , 2018 , 2, 1700128	5.9	36
180	Electrostatic Stabilization of Carbon Nitride Colloids in Organic Solvents Enables Stable Dispersions and Transparent Homogeneous CN Films for Optoelectronics. <i>Journal of the American Chemical Society</i> , 2018 , 140, 17532-17537	16.4	42
179	Visible-Light-Driven Photochemical Activation of sp3 CH Bond for Hemiaminal Formation. <i>Asian Journal of Organic Chemistry</i> , 2018 , 7, 2464-2467	3	3
178	Grouping Effect of Single Nickel N4 Sites in Nitrogen-Doped Carbon Boosts Hydrogen Transfer Coupling of Alcohols and Amines. <i>Angewandte Chemie</i> , 2018 , 130, 15414-15418	3.6	3
177	Grouping Effect of Single Nickel-N Sites in Nitrogen-Doped Carbon Boosts Hydrogen Transfer Coupling of Alcohols and Amines. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15194-15198	16.4	33
176	Thioimidazolium Salts as a Platform for Nonvolatile Alkylators and Degradable Antiseptics. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 15434-15440	8.3	4
175	Storing electricity as chemical energy: beyond traditional electrochemistry and double-layer compression. <i>Energy and Environmental Science</i> , 2018 , 11, 3069-3074	35.4	24
174	Carbocatalysis: Analyzing the Sources of Organic Transformations 2018 , 285-311		
173	C2NxO1½ framework carbons with defined microporosity and Co-doped functional pores. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 19013-19019	13	18
172	Heterogeneous Organocatalysis for Photoredox Chemistry. <i>ACS Catalysis</i> , 2018 , 8, 9790-9808	13.1	112
171	Ionothermal Synthesis of Triazine-Heptazine-Based Copolymers with Apparent Quantum Yields of 60 % at 420 nm for Solar Hydrogen Production from "Sea Water". <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9372-9376	16.4	259
170	Formation Mechanism, Growth Kinetics, and Stability Limits of Graphene Adlayers in Metal-Catalyzed CVD Growth. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800255	4.6	10
169	Identifying the Origin and Contribution of Surface Storage in TiO (B) Nanotube Electrode by In Situ Dynamic Valence State Monitoring. <i>Advanced Materials</i> , 2018 , 30, e1802200	24	72
168	Nanofluidic Ion Transport and Energy Conversion through Ultrathin Free-Standing Polymeric Carbon Nitride Membranes. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 10123-10126	16.4	113
167	Stabilization of Single Metal Atoms on Graphitic Carbon Nitride. <i>Advanced Functional Materials</i> , 2017 , 27, 1605785	15.6	172
166	Innovative polyelectrolytes/poly(ionic liquid)s for energy and the environment. <i>Polymer International</i> , 2017 , 66, 1119-1128	3.3	33
165	Catalysts: Stabilization of Single Metal Atoms on Graphitic Carbon Nitride (Adv. Funct. Mater. 8/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	2
164	Plants to Polyelectrolytes: Theophylline Polymers and Their Microsphere Synthesis. <i>Macromolecular Rapid Communications</i> , 2017 , 38, 1600748	4.8	5

163	Reinforced Hydrogels via Carbon Nitride Initiated Polymerization. <i>Macromolecules</i> , 2017 , 50, 1862-1869	9 5.5	46
162	Visible light-driven graphitic carbon nitride (g-C3N4) photocatalyzed ketalization reaction in methanol with methylviologen as efficient electron mediator. <i>Applied Catalysis B: Environmental</i> , 2017 , 207, 311-315	21.8	30
161	Tunable Nitrogen-Doped Carbon Nanoparticles from Tannic Acid and Urea and Their Potential for Sustainable Soots. <i>ChemNanoMat</i> , 2017 , 3, 311-318	3.5	10
160	The Performance of Nanoparticulate Graphitic Carbon Nitride as an Amphiphile. <i>Journal of the American Chemical Society</i> , 2017 , 139, 6026-6029	16.4	97
159	Efficient Electrocatalytic Reduction of CO by Nitrogen-Doped Nanoporous Carbon/Carbon Nanotube Membranes: A Step Towards the Electrochemical CO Refinery. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 7847-7852	16.4	202
158	Poly(Ionic Liquid)-Derived Carbon with Site-Specific N-Doping and Biphasic Heterojunction for Enhanced CO Capture and Sensing. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 7557-7563	16.4	100
157	A High-Throughput Composite Catalyst based on Nickel Carbon Cubes for the Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran. <i>ChemCatChem</i> , 2017 , 9, 3388-3394	5.2	22
156	Green Imidazolium Ionics-From Truly Sustainable Reagents to Highly Functional Ionic Liquids. <i>Chemistry - A European Journal</i> , 2017 , 23, 11810-11817	4.8	19
155	Carbon nitride nanosheets as visible light photocatalytic initiators and crosslinkers for hydrogels with thermoresponsive turbidity. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8933-8938	13	62
154	Hexaazatriphenylene doped carbon nitrides B iomimetic photocatalyst with superior oxidation power. <i>Applied Catalysis B: Environmental</i> , 2017 , 217, 622-628	21.8	52
153	Poly(Ionic Liquid)-Derived Carbon with Site-Specific N-Doping and Biphasic Heterojunction for Enhanced CO2 Capture and Sensing. <i>Angewandte Chemie</i> , 2017 , 129, 7665-7671	3.6	16
152	Hierarchically porous carbons from an emulsion-templated, urea-based deep eutectic. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16376-16385	13	34
151	"The Easier the Better" Preparation of Efficient Photocatalysts-Metastable Poly(heptazine imide) Salts. <i>Advanced Materials</i> , 2017 , 29, 1700555	24	110
150	Visible-Light-Irradiated Graphitic Carbon Nitride Photocatalyzed Diels-Alder Reactions with Dioxygen as Sustainable Mediator for Photoinduced Electrons. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 9336-9340	16.4	74
149	General Synthetic Route toward Highly Dispersed Metal Clusters Enabled by Poly(ionic liquid)s. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8971-8976	16.4	86
148	Advancing the n -悃 electron transition of carbon nitride nanotubes for H2 photosynthesis. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 12723-12728	13	153
147	Efficient Electrocatalytic Reduction of CO2 by Nitrogen-Doped Nanoporous Carbon/Carbon Nanotube Membranes: A Step Towards the Electrochemical CO2 Refinery. <i>Angewandte Chemie</i> , 2017 , 129, 7955-7960	3.6	66
146	The bakery of high-end sorption carbons: sugarūrea doughs as processable precursors for functional carbons. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16352-16358	13	6

145	Nitrogen-Doped Nanoporous Carbon Membranes with Co/CoP Janus-Type Nanocrystals as Hydrogen Evolution Electrode in Both Acidic and Alkaline Environments. <i>ACS Nano</i> , 2017 , 11, 4358-4364	1 ^{16.7}	168
144	Functional porous carbon nanospheres from sustainable precursors for high performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16263-16272	13	44
143	Synthesis of an electronically modified carbon nitride from a processable semiconductor, 3-amino-1,2,4-triazole oligomer, via a topotactic-like phase transition. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8394-8401	13	35
142	Main-Chain Polyimidazolium Polymers by One-Pot Synthesis and Application as Nitrogen-Doped Carbon Precursors. <i>Macromolecular Chemistry and Physics</i> , 2017 , 218, 1600586	2.6	14
141	Activating Cobalt Nanoparticles via the Mott-Schottky Effect in Nitrogen-Rich Carbon Shells for Base-Free Aerobic Oxidation of Alcohols to Esters. <i>Journal of the American Chemical Society</i> , 2017 , 139, 811-818	16.4	266
140	Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting. <i>Nature Communications</i> , 2017 , 8, 13592	17.4	123
139	Synergic Effect between Nucleophilic Monomers and Cu(II) Metal@rganic Framework for Visible-Light-Triggered Controlled Photopolymerization. <i>Chemistry of Materials</i> , 2017 , 29, 9445-9455	9.6	43
138	Optimizing Optical Absorption, Exciton Dissociation, and Charge Transfer of a Polymeric Carbon Nitride with Ultrahigh Solar Hydrogen Production Activity. <i>Angewandte Chemie - International</i> <i>Edition</i> , 2017 , 56, 13445-13449	16.4	379
137	Kraft Lignin as Electrode Material for Sustainable Electrochemical Energy Storage. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700698	4.6	35
136	Optimizing Optical Absorption, Exciton Dissociation, and Charge Transfer of a Polymeric Carbon Nitride with Ultrahigh Solar Hydrogen Production Activity. <i>Angewandte Chemie</i> , 2017 , 129, 13630-13634	₄ 3.6	91
135	Enhanced Dispersibility of Graphitic Carbon Nitride Particles in Aqueous and Organic Media via a One-Pot Grafting Approach. <i>Langmuir</i> , 2017 , 33, 9897-9906	4	73
134	Surface polycondensation as an effective tool to activate organic crystals: from B oxed semiconductors for water oxidation to 1d carbon nanotubes. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 18502-18508	13	21
133	Hybridizing Carbon Nitride Colloids with a Shell of Water-Soluble Conjugated Polymers for Tunable Full-Color Emission and Synergistic Cell Imaging. <i>ACS Applied Materials & Company Company (Note: Act of Applied Materials & Company Company</i>	- 4 35974	20
132	Moving Graphitic Carbon Nitride from Electrocatalysis and Photocatalysis to a Potential Electrode Material for Photoelectric Devices. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 2499-512	4.5	26
131	New Organic Semiconducting Scaffolds by Supramolecular Preorganization: Dye Intercalation and Dye Oxidation and Reduction. <i>Small</i> , 2016 , 12, 6090-6097	11	16
130	A Cu(II) metalಠrganic framework as a recyclable catalyst for ARGET ATRP. <i>Polymer Chemistry</i> , 2016 , 7, 7199-7203	4.9	27
129	Synthesis of Organized Layered Carbon by Self-Templating of Dithiooxamide. <i>Advanced Materials</i> , 2016 , 28, 6727-33	24	50
128	Small is Beautiful: Challenges and Perspectives of Nano/Meso/Microscience. <i>Small</i> , 2016 , 12, 2107-14	11	6

127	Small Science: Small is Beautiful: Challenges and Perspectives of Nano/Meso/Microscience (Small 16/2016). <i>Small</i> , 2016 , 12, 2102-2102	11	
126	Carbon: Eutectic Syntheses of Graphitic Carbon with High Pyrazinic Nitrogen Content (Adv. Mater. 6/2016). <i>Advanced Materials</i> , 2016 , 28, 1328-1328	24	2
125	Graphitic carbon nitride "reloaded": emerging applications beyond (photo)catalysis. <i>Chemical Society Reviews</i> , 2016 , 45, 2308-26	58.5	595
124	Local Platinum Environments in a Solid Analogue of the Molecular Periana Catalyst. <i>ACS Catalysis</i> , 2016 , 6, 2332-2340	13.1	40
123	Synthesis of novel 2-d carbon materials: sp2 carbon nanoribbon packing to form well-defined nanosheets. <i>Materials Horizons</i> , 2016 , 3, 214-219	14.4	23
122	Eutectic Syntheses of Graphitic Carbon with High Pyrazinic Nitrogen Content. <i>Advanced Materials</i> , 2016 , 28, 1287-94	24	76
121	Phenyl-Modified Carbon Nitride Quantum Dots with Distinct Photoluminescence Behavior. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3672-6	16.4	196
120	From Filter Paper to Functional Actuator by Poly(Ionic Liquid)-Modified Graphene Oxide. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500743	4.6	24
119	Phenyl-Modified Carbon Nitride Quantum Dots with Distinct Photoluminescence Behavior. <i>Angewandte Chemie</i> , 2016 , 128, 3736-3740	3.6	28
118	Enantioselective Nanoporous Carbon Based on Chiral Ionic Liquids. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 408-12	16.4	36
117	Pd Supported on Carbon Nitride Boosts the Direct Hydrogen Peroxide Synthesis. <i>ACS Catalysis</i> , 2016 , 6, 6959-6966	13.1	72
116	Vertically Aligned Two-Dimensional Graphene-Metal Hydroxide Hybrid Arrays for Li-O Batteries. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2016 , 8, 26041-26050	9.5	23
115	Nanoporous ionic organic networks: from synthesis to materials applications. <i>Chemical Society Reviews</i> , 2016 , 45, 6627-6656	58.5	132
114	Color-Tunable Photoluminescence and NIR Electroluminescence in Carbon Nitride Thin Films and Light-Emitting Diodes. <i>Advanced Optical Materials</i> , 2015 , 3, 913-917	8.1	94
113	Silver phosphate/graphitic carbon nitride as an efficient photocatalytic tandem system for oxygen evolution. <i>ChemSusChem</i> , 2015 , 8, 1350-8	8.3	166
112	Nickel nitride as an efficient electrocatalyst for water splitting. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8171-8177	13	325
111	High definition conductive carbon films from solution processing of nitrogen-containing oligomers. <i>Carbon</i> , 2015 , 94, 1044-1051	10.4	3
110	Carbon-doped BN nanosheets for metal-free photoredox catalysis. <i>Nature Communications</i> , 2015 , 6, 76	9 8 7.4	482

109	Triazoles: A New Class of Precursors for the Synthesis of Negatively Charged Carbon Nitride Derivatives. <i>Chemistry of Materials</i> , 2015 , 27, 5170-5179	9.6	143
108	Self-Assembly of Metal Phenolic Mesocrystals and Morphosynthetic Transformation toward Hierarchically Porous Carbons. <i>Journal of the American Chemical Society</i> , 2015 , 137, 8269-73	16.4	98
107	A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5480-5	16.4	267
106	Bifunctional metal-free catalysis of mesoporous noble carbons for oxygen reduction and evolution reactions. <i>ChemSusChem</i> , 2015 , 8, 1156-60	8.3	81
105	Redefining biorefinery: the search for unconventional building blocks for materials. <i>Chemical Society Reviews</i> , 2015 , 44, 5821-35	58.5	201
104	Poly(ionic liquid) binders as Li+ conducting mediators for enhanced electrochemical performance. <i>RSC Advances</i> , 2015 , 5, 85517-85522	3.7	24
103	Carbon- and Nitrogen-Based Porous Solids: A Recently Emerging Class of Materials. <i>Bulletin of the Chemical Society of Japan</i> , 2015 , 88, 386-398	5.1	103
102	Caffeine Doping of Carbon/Nitrogen-Based Organic Catalysts: Caffeine as a Supramolecular Edge Modifier for the Synthesis of Photoactive Carbon Nitride Tubes. <i>ChemCatChem</i> , 2015 , 7, 2826-2830	5.2	78
101	GaN and GaxIn1-xN Nanoparticles with Tunable Indium Content: Synthesis and Characterization. <i>Chemistry - A European Journal</i> , 2015 , 21, 18976-82	4.8	6
100	Nitrogen-Doped Carbon Electrodes: Influence of Microstructure and Nitrogen Configuration on the Electrical Conductivity of Carbonized Polyacrylonitrile and Poly(ionic liquid) Blends. <i>Macromolecular Chemistry and Physics</i> , 2015 , 216, 1930-1944	2.6	38
99	The Complex Role of Carbon Nitride as a Sensitizer in Photoelectrochemical Cells. <i>Advanced Optical Materials</i> , 2015 , 3, 1052-1058	8.1	35
98	Supramolecular Chemistry in Molten Sulfur: Preorganization Effects Leading to Marked Enhancement of Carbon Nitride Photoelectrochemistry. <i>Advanced Functional Materials</i> , 2015 , 25, 6265-	6259	74
97	A stable single-site palladium catalyst for hydrogenations. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 11265-9	16.4	586
96	Aqueous Self-Assembly of Purely Hydrophilic Block Copolymers into Giant Vesicles. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9715-8	16.4	58
95	Capacitive Deionization using Biomass-based Microporous Salt-Templated Heteroatom-Doped Carbons. <i>ChemSusChem</i> , 2015 , 8, 1867-74	8.3	88
94	Novel polyvinylimidazolium nanoparticles as high-performance binders for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7229-7234	13	32
93	Carbon- and Nitrogen-Based Organic Frameworks. Accounts of Chemical Research, 2015, 48, 1591-600	24.3	182
92	Thiazolium Poly(ionic liquid)s: Synthesis and Application as Binder for Lithium-Ion Batteries. <i>ACS Macro Letters</i> , 2015 , 4, 1312-1316	6.6	59

(2013-2015)

91	MAXNET Energy Focusing Research in Chemical Energy Conversion on the Electrocatlytic Oxygen Evolution. <i>Green</i> , 2015 , 5,		3
90	Microstructure replication of complex biostructures via poly(ionic liquid)-assisted carbonization. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5778-5782	13	6
89	Controlled carbon nitride growth on surfaces for hydrogen evolution electrodes. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 3654-8	16.4	170
88	The colloidal stabilization of carbon with carbon: carbon nanobubbles as both dispersant and glue for carbon nanotubes. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 1062-6	16.4	19
87	Triazine-based graphitic carbon nitride: a two-dimensional semiconductor. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7450-5	16.4	412
86	Hydrothermal decarboxylation of amino acid derived imidazolium zwitterions: a sustainable approach towards ionic liquids. <i>Green Chemistry</i> , 2014 , 16, 3705	10	37
85	An integrated strategy for the conversion of cellulosic biomass into Evalerolactone. <i>Catalysis Science and Technology</i> , 2014 , 4, 3626-3630	5.5	40
84	Vanadium nitride@N-doped carbon nanocomposites: tuning of pore structure and particle size through salt templating and its influence on supercapacitance in ionic liquid media. <i>RSC Advances</i> , 2014 , 4, 26981-26989	3.7	39
83	Liquid-based growth of polymeric carbon nitride layers and their use in a mesostructured polymer solar cell with V(oc) exceeding 1 V. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13486-9	16.4	190
82	Highly Efficient Transfer of Amino Groups to Imidazolium Entities for Polymer Coupling and Cross-Linking. <i>Macromolecules</i> , 2014 , 47, 2350-2353	5.5	18
81	Mesoporous graphitic carbon nitride as a heterogeneous catalyst for photoinduced copper(I)-catalyzed azidellkyne cycloaddition. <i>RSC Advances</i> , 2014 , 4, 52170-52173	3.7	43
80	Photochemically Mediated Atom Transfer Radical Polymerization Using Polymeric Semiconductor Mesoporous Graphitic Carbon Nitride. <i>Macromolecular Chemistry and Physics</i> , 2014 , 215, 675-681	2.6	99
79	An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. <i>Nature Communications</i> , 2014 , 5, 4293	17.4	381
78	Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets. <i>Carbon</i> , 2014 , 69, 460-466	10.4	141
77	Balted Silical Sol-Gel Chemistry of Silica under Hypersaline Conditions. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2014 , 640, 582-587	1.3	17
76	Carbon Aerogels and Monoliths: Control of Porosity and Nanoarchitecture via Sol G el routes. <i>Chemistry of Materials</i> , 2014 , 26, 196-210	9.6	174
75	Electro- and Photochemical Water Oxidation on Ligand-free Co3O4Nanoparticles with Tunable Sizes. <i>ACS Catalysis</i> , 2013 , 3, 383-388	13.1	149
74	Facile synthesis of carbon nitride micro-/nanoclusters with photocatalytic activity for hydrogen evolution. <i>RSC Advances</i> , 2013 , 3, 22988	3.7	31

73	Surface Area Control and Photocatalytic Activity of Conjugated Microporous Poly(benzothiadiazole) Networks. <i>Angewandte Chemie</i> , 2013 , 125, 1472-1476	3.6	62
72	Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates. <i>Energy and Environmental Science</i> , 2013 , 6, 1486	35.4	153
71	Polycondensation of boron- and nitrogen-codoped holey graphene monoliths from molecules: carbocatalysts for selective oxidation. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 4572-6	16.4	195
70	Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis. <i>Chemical Society Reviews</i> , 2013 , 42, 6593-604	58.5	595
69	Facilitating room-temperature Suzuki coupling reaction with light: Mott-Schottky photocatalyst for C-C-coupling. <i>Scientific Reports</i> , 2013 , 3,	4.9	137
68	Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7118-21	16.4	650
67	Polycondensation of Boron- and Nitrogen-Codoped Holey Graphene Monoliths from Molecules: Carbocatalysts for Selective Oxidation. <i>Angewandte Chemie</i> , 2013 , 125, 4670-4674	3.6	50
66	Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 68-89	16.4	2479
65	Thermolytic synthesis of graphitic boron carbon nitride from an ionic liquid precursor: mechanism, structure analysis and electronic properties. <i>Journal of Materials Chemistry</i> , 2012 , 22, 23996		62
64	mpg-C3N4 as a solid base catalyst for Knoevenagel condensations and transesterification reactions. <i>Catalysis Science and Technology</i> , 2012 , 2, 1005	5.5	138
63	Synthesis of terpenepoly(ethylene oxide)s by t-BuP4-promoted anionic ring-opening polymerization. <i>Polymer Chemistry</i> , 2012 , 3, 1763-1768	4.9	39
62	Solvent-Free and Metal-Free Oxidation of Toluene Using O2 and g-C3N4 with Nanopores: Nanostructure Boosts the Catalytic Selectivity. <i>ACS Catalysis</i> , 2012 , 2, 2082-2086	13.1	198
61	Enhanced Carbon Dioxide Adsorption by a Mesoporous Poly(ionic liquid). <i>ACS Macro Letters</i> , 2012 , 1, 1028-1031	6.6	140
60	Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. <i>Nature Communications</i> , 2012 , 3,	17.4	75°
59	Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. ACS Catalysis, 2012, 2, 1596-160	613.1	1256
58	Mesoporous Graphitic Carbon Nitride as a Heterogeneous Visible Light Photoinitiator for Radical Polymerization. <i>ACS Macro Letters</i> , 2012 , 1, 546-549	6.6	110
57	Carbon Materials with a Kick!. Macromolecular Chemistry and Physics, 2012, 213, 999-1000	2.6	4
56	Conjugated porous polymers for energy applications. <i>Energy and Environmental Science</i> , 2012 , 5, 7819	35.4	343

(2009-2012)

55	Hollow Carbon Nanospheres with Superior Rate Capability for Sodium-Based Batteries. <i>Advanced Energy Materials</i> , 2012 , 2, 873-877	21.8	915
54	SiO2-Surface-Assisted Controllable Synthesis of TaON and Ta3N5 Nanoparticles for Alkene Epoxidation. <i>Angewandte Chemie</i> , 2012 , 124, 985-989	3.6	10
53	Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3183-7	16.4	624
52	A green chemistry of graphene: photochemical reduction towards monolayer graphene sheets and the role of water adlayers. <i>ChemSusChem</i> , 2012 , 5, 642-6	8.3	51
51	Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 657-60	16.4	552
50	Mesocrystals of vanadium pentoxide: a comparative evaluation of three different pathways of mesocrystal synthesis from tactosol precursors. <i>ACS Nano</i> , 2011 , 5, 107-14	16.7	34
49	Facile general route toward tunable Magnli nanostructures and their use as thermoelectric metal oxide/carbon nanocomposites. <i>ACS Nano</i> , 2011 , 5, 9052-61	16.7	76
48	Ionothermal Route to Layered Two-Dimensional Polymer-Frameworks Based on Heptazine Linkers. <i>Macromolecules</i> , 2010 , 43, 6639-6645	5.5	56
47	Mesoporous Fe3C sponges as magnetic supports and as heterogeneous catalyst. <i>Journal of Materials Chemistry</i> , 2010 , 20, 6019		46
46	A carbon/titanium vanadium nitride composite for lithium storage. <i>ChemPhysChem</i> , 2010 , 11, 3219-23	3.2	43
45	Development of molecular and solid catalysts for the direct low-temperature oxidation of methane to methanol. <i>ChemSusChem</i> , 2010 , 3, 277-82	8.3	71
44	Facile one-pot synthesis of nanoporous carbon nitride solids by using soft templates. <i>ChemSusChem</i> , 2010 , 3, 435-9	8.3	285
43	Polymer-Controlled Biomimetic Mineralization of Novel Inorganic Materials 2010 , 607-643		
42	Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 441-4	16.4	1118
41	Biomimetic Principles in Polymer and Material Science. <i>Macromolecular Chemistry and Physics</i> , 2010 , 211, 166-170	2.6	44
40	A metal-free polymeric photocatalyst for hydrogen production from water under visible light. <i>Nature Materials</i> , 2009 , 8, 76-80	27	8489
39	Polyelectrolyte-directed nanoparticle aggregation: systematic morphogenesis of calcium carbonate by nonclassical crystallization. <i>ACS Nano</i> , 2009 , 3, 1966-78	16.7	96
38	Toward Tailorable Porous Organic Polymer Networks: A High-Temperature Dynamic Polymerization Scheme Based on Aromatic Nitriles. <i>Macromolecules</i> , 2009 , 42, 319-326	5.5	275

37	Ordered mesoporous Sb-, Nb-, and Ta-doped SnO2 thin films with adjustable doping levels and high electrical conductivity. <i>ACS Nano</i> , 2009 , 3, 1373-8	16.7	154
36	Synthesis of ternary metal nitride nanoparticles using mesoporous carbon nitride as reactive template. <i>ACS Nano</i> , 2008 , 2, 2489-96	16.7	136
35	Self-assembly in inorganic and hybrid systems: beyond the molecular scale. <i>Dalton Transactions</i> , 2008 , 18-24	4.3	52
34	2008,		381
33	Electrospun Silica P olybenzimidazole Nanocomposite Fibers. <i>Macromolecular Materials and Engineering</i> , 2008 , 293, 815-819	3.9	17
32	Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 3450-3	16.4	1726
31	Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem?. <i>New Journal of Chemistry</i> , 2007 , 31, 787	3.6	361
30	Thermal Transformation of Metal Oxide Nanoparticles into Nanocrystalline Metal Nitrides Using Cyanamide and Urea as Nitrogen Source. <i>Chemistry of Materials</i> , 2007 , 19, 3499-3505	9.6	104
29	A Direct Synthesis of Mesoporous Carbons with Bicontinuous Pore Morphology from Crude Plant Material by Hydrothermal Carbonization. <i>Chemistry of Materials</i> , 2007 , 19, 4205-4212	9.6	391
28	Unexpected thermal characteristics of aqueous solutions of poly(2-isopropyl-2-oxazoline). <i>Soft Matter</i> , 2007 , 3, 430-431	3.6	81
27	Formation of Novel Layered Nanostructures from Lanthanide-Complexes by Secondary Interactions with Ligating Monomers in Miniemulsion Droplets. <i>Macromolecular Chemistry and Physics</i> , 2006 , 207, 160-165	2.6	20
26	Synthesis of Poly(tartar amides) as Bio-Inspired Antifreeze Additives. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 1660-1664	4.8	23
25	Ligand and solvent effects in the nonaqueous synthesis of highly ordered anisotropic tungsten oxide nanostructures. <i>Journal of Materials Chemistry</i> , 2006 , 16, 3969		58
24	Ultrafast Conversion and Molecular Weight Control through Temperature Programming in Microwave-Induced Miniemulsion Polymerization. <i>Macromolecules</i> , 2006 , 39, 5720-5728	5.5	33
23	Synthesis of yttria-based crystalline and lamellar nanostructures and their formation mechanism. <i>Small</i> , 2005 , 1, 112-21	11	105
22	Synthesis of stable aragonite superstructures by a biomimetic crystallization pathway. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 6004-9	16.4	95
21	Ligand functionality as a versatile tool to control the assembly behavior of preformed titania nanocrystals. <i>Chemistry - A European Journal</i> , 2005 , 11, 3541-51	4.8	124
20	SAXS analysis of mesoporous model materials: a validation of data evaluation techniques to characterize pore size, shape, surface area, and curvature of the interface 2005 , 105-113		8

19	A general soft-chemistry route to perovskites and related materials: synthesis of BaTiO(3), BaZrO(3), and LiNbO(3) nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 2270-3	16.4	249
18	Synthesis and Characterization of Stable and Crystalline Ce1-xZrxO2 Nanoparticle Sols. <i>Chemistry of Materials</i> , 2004 , 16, 2599-2604	9.6	111
17	90 Years of Polymer Latexes and Heterophase Polymerization: More vital than ever. <i>Macromolecular Chemistry and Physics</i> , 2003 , 204, 207-219	2.6	61
16	The Fabrication of Very Small Miniemulsion Latexes from N-Stearoylglutamate and Lauryl Methacrylate: Evidence for Droplet Budding. <i>Macromolecular Chemistry and Physics</i> , 2003 , 204, 1966-19	70 6	14
15	Polymer-Controlled Morphosynthesis and Mineralization of Metal Carbonate Superstructures (Il <i>Journal of Physical Chemistry B</i> , 2003 , 107, 7396-405	3.4	257
14	Solid-state morphologies of linear and bottlebrush-shaped polystyreneßoly(Z-l-lysine) block copolymers. <i>Polymer</i> , 2002 , 43, 5321-5328	3.9	70
13	Mesoporous inorganic monoliths from lyotropic liquid crystalline polymer templates. <i>Zeitschrift Fur Elektrotechnik Und Elektrochemie</i> , 1997 , 101, 1679-1682		26
12	Synthesis of organic polymer gels in microemulsions and lyotropic mesophases. <i>Zeitschrift Fur Elektrotechnik Und Elektrochemie</i> , 1997 , 101, 1699-1702		11
11	Rheology of Small Spherical Polystyrene Microgels: A Direct Proof for a New Transport Mechanism in Bulk Polymers besides Reptation. <i>Macromolecules</i> , 1995 , 28, 4227-4233	5.5	80
10	Synthesis and characterization of noble metal colloids in block copolymer micelles. <i>Advanced Materials</i> , 1995 , 7, 1000-1005	24	316
10		24	316
	Materials, 1995 , 7, 1000-1005	24	
9	Materials, 1995 , 7, 1000-1005 Inorganic Synthesis 569-617	13	1
9	Materials, 1995, 7, 1000-1005 Inorganic Synthesis 569-617 Porous Polymers and Resins 1964-2013 Cull/Cul decorated N-doped carbonaceous electrocatalysts for the oxygen reduction reaction.		1
9 8 7	Inorganic Synthesis 569-617 Porous Polymers and Resins 1964-2013 Cull/Cul decorated N-doped carbonaceous electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, Overcoming Electron Transfer Efficiency Bottlenecks for Hydrogen Production in Highly Crystalline	13	1 6 2
9 8 7 6	Inorganic Synthesis569-617 Porous Polymers and Resins1964-2013 Cull/Cul decorated N-doped carbonaceous electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, Overcoming Electron Transfer Efficiency Bottlenecks for Hydrogen Production in Highly Crystalline Carbon Nitride-Based Materials. Advanced Sustainable Systems, 2100429 Carbon nitride-coated transparent glass vials as photoinitiators for radical polymerization. Journal	13	1 6 2 5
9 8 7 6	Inorganic Synthesis 569-617 Porous Polymers and Resins 1964-2013 Cull/Cul decorated N-doped carbonaceous electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, Overcoming Electron Transfer Efficiency Bottlenecks for Hydrogen Production in Highly Crystalline Carbon Nitride-Based Materials. Advanced Sustainable Systems, 2100429 Carbon nitride-coated transparent glass vials as photoinitiators for radical polymerization. Journal of Polymer Science, H2 and CH4 production from bio-alcohols using condensed poly(heptazine imide) with visible light.	13 5.9 2.4	1 6 2 5

Controlled lignosulfonate depolymerization via solvothermal fragmentation coupled with catalytic hydrogenolysis/hydrogenation in a continuous flow reactor. *Green Chemistry*,

10 4