Peio Lopez Iturri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1634338/publications.pdf

Version: 2024-02-01

331670 395702 122 1,442 21 citations h-index papers

g-index 123 123 123 1444 docs citations times ranked citing authors all docs

33

#	Article	IF	Citations
1	Deterministic Wireless Channel Characterization towards the Integration of Communication Capabilities to Enable Context Aware Industrial Internet of Thing Environments. Mobile Networks and Applications, 2023, 28, 4-18.	3.3	2
2	Analysis of low power wide area network wireless technologies in smart agriculture for large-scale farm monitoring and tractor communications. Measurement: Journal of the International Measurement Confederation, 2022, 187, 110231.	5.0	22
3	Bi2Bi Communication: Toward Encouragement of Sustainable Smart Mobility. IEEE Access, 2022, 10, 9380-9394.	4.2	3
4	Intra-train Wagon Wireless Channel Connectivity Analysis of Ultra Dense Node Deployments. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2022, , 269-279.	0.3	0
5	In-Field Energy Performance of Solar PV Module Made of UMG Silicon. IEEE Journal of Photovoltaics, 2022, 12, 1109-1115.	2.5	2
6	Spatial V2X Traffic Density Channel Characterization for Urban Environments. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 2761-2774.	8.0	11
7	Wireless Characterization and Assessment of an UWB-Based System in Industrial Environments. IEEE Access, 2021, 9, 107824-107841.	4.2	6
8	Basketball Player On-Body Biophysical and Environmental Parameter Monitoring Based on Wireless Sensor Network Integration. IEEE Access, 2021, 9, 27051-27066.	4.2	5
9	Design and Experimental Validation of an Augmented Reality System With Wireless Integration for Context Aware Enhanced Show Experience in Auditoriums. IEEE Access, 2021, 9, 5466-5484.	4.2	4
10	Integration of Wireless Communication Capabilities to Enable Context Aware Industrial Internet of Thing Environments. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 162-170.	0.3	0
11	Empirical and Modeling Approach for Environmental Indoor RF-EMF Assessment in Complex High-Node Density Scenarios: Public Shopping Malls Case Study. IEEE Access, 2021, 9, 46755-46775.	4.2	9
12	IoT Enabled Low Cost Distributed Angle Measurement Fault Detection System for LFR Plants. IEEE Sensors Journal, 2021, 21, 24855-24868.	4.7	2
13	Deterministic and Empirical Approach for Millimeter-Wave Complex Outdoor Smart Parking Solution Deployments. Sensors, 2021, 21, 4112.	3 . 8	9
14	Longâ€ŧerm degradation rate of crystalline silicon PV modules at commercial PV plants: An 82â€MWp assessment over 10 years. Progress in Photovoltaics: Research and Applications, 2021, 29, 1294-1302.	8.1	16
15	Enabling Customizable Services for Multimodal Smart Mobility With City-Platforms. IEEE Access, 2021, 9, 41628-41646.	4.2	17
16	Towards Environmental RF-EMF Assessment of mmWave High-Node Density Complex Heterogeneous Environments. Sensors, 2021, 21, 8419.	3.8	3
17	Deterministic-Based 5G mmWave Propagation Characterization in Urban Environments. , 2021, , .		O
18	Deterministic 3D Ray-Launching Millimeter Wave Channel Characterization for Vehicular Communications in Urban Environments. Sensors, 2020, 20, 5284.	3.8	10

#	Article	IF	CITATIONS
19	Aggregator to Electric Vehicle LoRaWAN Based Communication Analysis in Vehicle-to-Grid Systems in Smart Cities. IEEE Access, 2020, 8, 124688-124701.	4.2	33
20	Implementation of an Interactive Environment With Multilevel Wireless Links for Distributed Botanical Garden in University Campus. IEEE Access, 2020, 8, 132382-132396.	4.2	10
21	Patient Tracking in a Multi-Building, Tunnel-Connected Hospital Complex. IEEE Sensors Journal, 2020, 20, 14453-14464.	4.7	8
22	Towards Sub-Meter Level UWB Indoor Localization Using Body Wearable Sensors. IEEE Access, 2020, 8, 178886-178899.	4.2	26
23	Radio Wave Propagation and WSN Deployment in Complex Utility Tunnel Environments. Sensors, 2020, 20, 6710.	3.8	15
24	Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes. Sensors, 2020, 20, 6865.	3.8	46
25	Analysis and Design of IoT-Enabled, Low-Cost Distributed Angle Measurement System. Proceedings (mdpi), 2020, 42, 58.	0.2	1
26	Wireless Channel Characterization and System Analysis of Complex Utility Tunnel Environments. Proceedings (mdpi), 2020, 42, 53.	0.2	0
27	Millimeter Wave Spatial Channel Characterization for Vehicular Communications. Proceedings (mdpi), 2020, 42, 64.	0.2	3
28	Fifth-Generation (5G) mmWave Spatial Channel Characterization for Urban Environments' System Analysis. Sensors, 2020, 20, 5360.	3.8	19
29	From 2G to 5G Spatial Modeling of Personal RF-EMF Exposure Within Urban Public Trams. IEEE Access, 2020, 8, 100930-100947.	4.2	22
30	A 3D Ray Launching Time-Frequency Channel Modeling Approach for UWB Ranging Applications. IEEE Access, 2020, 8, 97321-97334.	4.2	5
31	Design and Empirical Validation of a Bluetooth 5 Fog Computing Based Industrial CPS Architecture for Intelligent Industry 4.0 Shipyard Workshops. IEEE Access, 2020, 8, 45496-45511.	4.2	23
32	Validation of 3D simulation tool for radio channel modeling at 60ÂGHz: A meeting point for empirical and simulation-based models. Measurement: Journal of the International Measurement Confederation, 2020, 163, 108038.	5.0	5
33	Building Decentralized Fog Computing-Based Smart Parking Systems: From Deterministic Propagation Modeling to Practical Deployment. IEEE Access, 2020, 8, 117666-117688.	4.2	15
34	Design and Empirical Validation of a LoRaWAN IoT Smart Irrigation System. Proceedings (mdpi), 2020, 42, .	0.2	21
35	Enhanced Wireless Channel Estimation Through Parametric Optimization of Hybrid Ray Launching-Collaborative Filtering Technique. IEEE Access, 2020, 8, 83070-83080.	4.2	5
36	Deterministic Radio Channel Characterization for Near-Ground Wireless Sensor Networks Deployment Optimization in Smart Agriculture. , 2020, , .		2

#	Article	lF	Citations
37	INTERACTIVE PROMOTION OF STEM UNIVERSITY DEGREES AMONG HIGH SCHOOL STUDENTS. , 2020, , .		О
38	Implementation of a WSN-Based IIoT Monitoring System within the Workshop of a Solar Protection Curtains Company., 2020, 2, .		1
39	Low-Cost Cloud Enabled Wireless Monitoring System for Linear Fresnel Solar Plants. , 2020, 2, .		2
40	Impact of Body Wearable Sensor Positions on UWB Ranging. IEEE Sensors Journal, 2019, 19, 11449-11457.	4.7	31
41	Design and Experimental Validation of a LoRaWAN Fog Computing Based Architecture for IoT Enabled Smart Campus Applications. Sensors, 2019, 19, 3287.	3.8	51
42	Performance Evaluation and Interference Characterization of Wireless Sensor Networks for Complex High-Node Density Scenarios. Sensors, 2019, 19, 3516.	3.8	7
43	A Radio Channel Model for D2D Communications Blocked by Single Trees in Forest Environments. Sensors, 2019, 19, 4606.	3.8	16
44	RF Channel Propagation Modeling for Wireless Sensor Networks in Intelligent Transportation Systems. , 2019, , .		0
45	Implementation of Radiating Elements for Radiofrequency Front-Ends by Screen-Printing Techniques for Internet of Things Applications. Sensors, 2019, 19, 3626.	3.8	4
46	FDTD and Empirical Exploration of Human Body and UWB Radiation Interaction on TOF Ranging. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 1119-1123.	4.0	24
47	Intelligent Control of Wind-Assisted PHEVs Smart Charging Station. Energies, 2019, 12, 909.	3.1	16
48	Analysis, Design and Empirical Validation of a Smart Campus Based on LoRaWAN. Proceedings (mdpi), 2019, 4, 7.	0.2	2
49	Spatial Characterization of Personal RF-EMF Exposure in Public Transportation Buses. IEEE Access, 2019, 7, 33038-33054.	4.2	22
50	On the requirements of the power converter for second-life lithium-ion batteries., 2019,,.		3
51	Context Aware Intensive Care Unit Wireless System Analysis., 2019,,.		0
52	Effects of the Body Wearable Sensor Position on the UWB Localization Accuracy. Electronics (Switzerland), 2019, 8, 1351.	3.1	21
53	Wireless Channel Assessment of Auditoriums for the Deployment of Augmented Reality Systems for Enhanced Show Experience of Impaired Persons. Proceedings (mdpi), 2019, 42, .	0.2	2
54	Multi-Level Internet of Things Communication Strategy for Microgrid Smart Network. Proceedings (mdpi), 2019, 42, .	0.2	0

#	Article	IF	Citations
55	Fuzzy Logic-Based Energy Management System Design for Residential Grid-Connected Microgrids. IEEE Transactions on Smart Grid, 2018, 9, 530-543.	9.0	230
56	Integration of Wireless Sensor Networks in Intelligent Transportation Systems within Smart City Context. , 2018, , .		3
57	Integration of Autonomous Wireless Sensor Networks in Academic School Gardens. Sensors, 2018, 18, 3621.	3.8	8
58	Fuzzy-based energy management of a residential electro-thermal microgrid based on power forecasting. , $2018, , .$		8
59	Influence of the Aging Model of Lithium-Ion Batteries on the Management of PV Self-Consumption Systems., 2018,,.		12
60	Efficient Wireless Channel Characterization in Medicalised Vehicles for Smart Health., 2018,,.		0
61	Wireless System Integration to Enable Smart Cities and Smart Regions. Proceedings (mdpi), 2018, 2, 109.	0.2	0
62	Implementation and Operational Analysis of an Interactive Intensive Care Unit within a Smart Health Context. Sensors, 2018, 18, 389.	3.8	15
63	Deterministic Propagation Modeling for Intelligent Vehicle Communication in Smart Cities. Sensors, 2018, 18, 2133.	3.8	10
64	Performance Evaluation and Interference Characterization of Wireless Sensor Networks for Complex High-Node Density Scenarios. Proceedings (mdpi), 2018, 4, .	0.2	0
65	Radio Channel Characterization in Dense Forest Environments for IoT-5G. Proceedings (mdpi), 2018, 4, .	0.2	2
66	Wireless Performance in Dense-Transceiver Scenarios to Enable Context-Aware Scenarios. , 2018, , 329-350.		0
67	Optimization and Design of Wireless Systems for the Implementation of Context Aware Scenarios in Railway Passenger Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2017, 18, 2838-2850.	8.0	15
68	Influence of meshing adaption in convergence performance of deterministic ray launching estimation in indoor scenarios. Journal of Electromagnetic Waves and Applications, 2017, 31, 544-559.	1.6	15
69	Optimized Wireless Channel Characterization in Large Complex Environments by Hybrid Ray Launching-Collaborative Filtering Approach. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 780-783.	4.0	43
70	Design and Implementation of Context Aware Applications With Wireless Sensor Network Support in Urban Train Transportation Environments. IEEE Sensors Journal, 2017, 17, 169-178.	4.7	39
71	SesToCross: Semantic Expert System to Manage Single-Lane Road Crossing. IEEE Transactions on Intelligent Transportation Systems, 2017, 18, 1221-1233.	8.0	9
72	Study on the impact of the body shadow effect in wireless channels through dosimetry measurements. , 2017, , .		1

#	Article	IF	CITATIONS
73	Spatial Characterization of Radio Propagation Channel in Urban Vehicle-to-Infrastructure Environments to Support WSNs Deployment. Sensors, 2017, 17, 1313.	3.8	19
74	Challenges in Wireless System Integration as Enablers for Indoor Context Aware Environments. Sensors, 2017, 17, 1616.	3.8	8
75	Characterization of Radio Propagation Channel in Urban Vehicle to Infrastructure Environments to Support WSNs. Proceedings (mdpi), 2017, 1, 19.	0.2	2
76	Assessment of ISM 2.4GHz wireless sensor networks performance in urban infrasctructure scenarios. , 2017, , .		0
77	Characterisation of radio wave propagation in vehicular environments through deterministic methods., 2017,,.		0
78	Deterministic Propagation Modeling for Intelligent Vehicle Communication in Smart Cities. Proceedings (mdpi), 2017, 2, .	0.2	0
79	Integration of Autonomous Wireless Sensor Networks in Academic School Gardens. Proceedings (mdpi), 2017, 2, .	0.2	1
80	Implementation and Analysis of ISM 2.4 GHz Wireless Sensor Network Systems in Judo Training Venues. Sensors, 2016, 16, 1247.	3.8	8
81	Performance Analysis of ZigBee Wireless Networks for AAL through Hybrid Ray Launching and Collaborative Filtering. Journal of Sensors, 2016, 2016, 1-16.	1.1	10
82	Implementation of Context Aware e-Health Environments Based on Social Sensor Networks. Sensors, 2016, 16, 310.	3.8	15
83	Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections. Sensors, 2016, 16, 1140.	3.8	10
84	Implementation and Analysis of a Wireless Sensor Network-Based Pet Location Monitoring System for Domestic Scenarios. Sensors, 2016, 16, 1384.	3.8	16
85	Optimal parameter estimation for wireless signal analysis in context-aware scenarios: A brief study. , 2016, , .		2
86	Analysis of vehicular connectivity in smart health service provision scenarios., 2016,,.		0
87	Hybrid equivalent source – 3D ray-launching simulation technique for deterministic estimation of radiated emissions of electrical appliances. Journal of Electromagnetic Waves and Applications, 2016, 30, 415-430.	1.6	0
88	Implementation of Wireless Sensor Network Architecture for Interactive Shopping Carts to Enable Context-Aware Commercial Areas. IEEE Sensors Journal, 2016, 16, 5416-5425.	4.7	8
89	An accurate UTD extension to a ray-launching algorithm for the analysis of complex indoor radio environments. Journal of Electromagnetic Waves and Applications, 2016, 30, 43-60.	1.6	16
90	Two-dimensional collaborative filtering approach to wireless channel characterization in medical complex scenarios. , 2016 , , .		2

#	Article	IF	Citations
91	Characterisation of radio wave propagation in complex indoor environments with and accurate Ray Launching and UTD method., $2016, \ldots$		O
92	Analysis of Wireless Sensor Network performance in urban infrastructure to vehicle scenarios. , 2016, , .		1
93	Design and performance analysis of wireless body area networks in complex indoor e-Health hospital environments for patient remote monitoring. International Journal of Distributed Sensor Networks, 2016, 12, 155014771666806.	2.2	12
94	Analysis of Bluetooth-Based Wireless Sensor Networks Performance in Hospital Environments. Proceedings (mdpi), 2016, 1 , .	0.2	3
95	Challenges in the implementation of context-aware scenarios within emergency rooms. , 2015, , .		0
96	Dense wireless sensor network design for the implementation of Smart Health environments. , 2015, , .		6
97	Evaluation of Electromagnetic Interference and Exposure Assessment from s-Health Solutions Based on Wi-Fi Devices. BioMed Research International, 2015, 2015, 1-9.	1.9	30
98	Estimation of Radiofrequency Power Leakage from Microwave Ovens for Dosimetric Assessment at Nonionizing Radiation Exposure Levels. BioMed Research International, 2015, 2015, 1-14.	1.9	22
99	Analysis of wireless sensor network performance embedded in motorcycle communication system. , 2015, , .		0
100	Hybrid-based optimization of wireless channel characterization for health services in medical complex environments. , $2015, , .$		6
101	Dosimetric assessment of RadioFrequency power leakage from microwave ovens in complex scenarios. , 2015, , .		1
102	Exposure assessment from s-Health solutions based on WLAN/WBAN systems., 2015,,.		0
103	Analysis of Wireless Sensor Network Topology and Estimation of Optimal Network Deployment by Deterministic Radio Channel Characterization. Sensors, 2015, 15, 3766-3788.	3.8	14
104	Analysis of estimation of electromagnetic dosimetric values from non-ionizing radiofrequency fields in conventional road vehicle environments. Electromagnetic Biology and Medicine, 2015, 34, 19-28.	1.4	22
105	Radio channel characterization of Vehicle-to-Infrastructure communications at 60GHz., 2015, , .		1
106	Characterization of Wireless Channel Impact on Wireless Sensor Network Performance in Public Transportation Buses. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 3280-3293.	8.0	24
107	Dosimetric assessment for non-ionizing ISM 2.4 GHz wireless systems in a commercial passenger aircraft., 2014,,.		0
108	Estimation of wireless coverage in complex cave environments for speleology applications. , 2014, , .		2

#	Article	IF	CITATIONS
109	Radio Characterization for ISM 2.4 GHz Wireless Sensor Networks for Judo Monitoring Applications. Sensors, 2014, 14, 24004-24028.	3.8	6
110	Analysis of efficient dense wireless sensor network deployment in Smart City environments. , 2014, , .		1
111	Analysis of Radio Wave Propagation for ISM 2.4 GHz Wireless Sensor Networks in Inhomogeneous Vegetation Environments. Sensors, 2014, 14, 23650-23672.	3.8	16
112	Implementation and Control of a Residential Electrothermal Microgrid Based on Renewable Energies, a Hybrid Storage System and Demand Side Management. Energies, 2014, 7, 210-237.	3.1	53
113	Assessment of electromagnetic dosimetric values from non-ionizing radiofrequency sources in a conventional road vehicle. , 2014, , .		0
114	Characterization of wireless channel response in in-vehicle environments., 2014,,.		2
115	Radio channel characterization for bluetooth communication systems onboard commercial aircrafts. Microwave and Optical Technology Letters, 2014, 56, 2660-2664.	1.4	0
116	ZigBee Radio Channel Analysis in a Complex Vehicular Environment [Wireless Corner]. IEEE Antennas and Propagation Magazine, 2014, 56, 232-245.	1.4	19
117	Implementing context aware scenarios to enable smart health in complex urban environments. , 2014, , .		13
118	Channel characterization in indoor wireless sensor network deployment in commercial environment. , 2014, , .		0
119	Topological dependence in the performance of deterministic wireless channel estimation. , 2014, , .		0
120	Impact of High Power Interference Sources in Planning and Deployment of Wireless Sensor Networks and Devices in the 2.4 GHz Frequency Band in Heterogeneous Environments. Sensors, 2012, 12, 15689-15708.	3.8	36
121	Performance Analysis of IEEE 802.15.4 Compliant Wireless Devices for Heterogeneous Indoor Home Automation Environments. International Journal of Antennas and Propagation, 2012, 2012, 1-14.	1.2	34
122	Analysis, Design and Practical Validation of an Augmented Reality Teaching System Based on Microsoft HoloLens 2 and Edge Computing. , 0, , .		7