
Alessandro A Jammal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/163425/publications.pdf Version: 2024-02-01

ALESSANDRO A JAMMAL

#	Article	IF	CITATIONS
1	From Machine to Machine. Ophthalmology, 2019, 126, 513-521.	2.5	158
2	Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma From Optical Coherence Tomography Scans. JAMA Ophthalmology, 2020, 138, 333.	1.4	92
3	A Review of Deep Learning for Screening, Diagnosis, and Detection of Glaucoma Progression. Translational Vision Science and Technology, 2020, 9, 42.	1.1	89
4	A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc Photographs. American Journal of Ophthalmology, 2019, 201, 9-18.	1.7	70
5	Human Versus Machine: Comparing a Deep Learning Algorithm to Human Gradings for Detecting Glaucoma on Fundus Photographs. American Journal of Ophthalmology, 2020, 211, 123-131.	1.7	69
6	Detection of Progressive Glaucomatous Optic Nerve Damage on Fundus Photographs with Deep Learning. Ophthalmology, 2021, 128, 383-392.	2.5	49
7	Corneal Biomechanics and Visual Field Progression in Eyes with Seemingly Well-Controlled Intraocular Pressure. Ophthalmology, 2019, 126, 1640-1646.	2.5	47
8	Rates of Glaucomatous Structural and Functional Change From a Large Clinical Population: The Duke Glaucoma Registry Study. American Journal of Ophthalmology, 2021, 222, 238-247.	1.7	45
9	Artificial Intelligence Mapping of Structure to Function in Glaucoma. Translational Vision Science and Technology, 2020, 9, 19.	1.1	42
10	Quantification of Retinal Nerve Fibre Layer Thickness on Optical Coherence Tomography with a Deep Learning Segmentation-Free Approach. Scientific Reports, 2020, 10, 402.	1.6	33
11	The Effect of Age on Increasing Susceptibility to Retinal Nerve Fiber Layer Loss in Glaucoma. , 2020, 61, 8.		32
12	Impact of Intraocular Pressure Control on Rates of Retinal Nerve Fiber Layer Loss in a Large Clinical Population. Ophthalmology, 2021, 128, 48-57.	2.5	28
13	Prospective evaluation of micropulse transscleral diode cyclophotocoagulation in refractory glaucoma: 1 year results. Arquivos Brasileiros De Oftalmologia, 2019, 82, 381-388.	0.2	24
14	Blood Pressure and Glaucomatous Progression in a Large Clinical Population. Ophthalmology, 2022, 129, 161-170.	2.5	21
15	Predicting Glaucoma Development With Longitudinal Deep Learning Predictions From Fundus Photographs. American Journal of Ophthalmology, 2021, 225, 86-94.	1.7	20
16	Rapid initial OCT RNFL thinning is predictive of faster visual field loss during extended follow-up in glaucoma. American Journal of Ophthalmology, 2021, 229, 100-107.	1.7	20
17	Impact of anxiety and depression on progression to glaucoma among glaucoma suspects. British Journal of Ophthalmology, 2021, 105, 1244-1249.	2.1	19
18	Comparison of Short- And Long-Term Variability in Standard Perimetry and Spectral Domain Optical Coherence Tomography in Glaucoma. American Journal of Ophthalmology, 2020, 210, 19-25.	1.7	18

#	Article	IF	CITATIONS
19	An objective structural and functional reference standard in glaucoma. Scientific Reports, 2021, 11, 1752.	1.6	16
20	Detecting Retinal Nerve Fibre Layer Segmentation Errors on Spectral Domain-Optical Coherence Tomography with a Deep Learning Algorithm. Scientific Reports, 2019, 9, 9836.	1.6	14
21	Visual Crowding in Glaucoma. , 2019, 60, 538.		14
22	Performance of the Rule of 5 for Detecting Glaucoma Progression between Visits withÂOCT. Ophthalmology Glaucoma, 2019, 2, 319-326.	0.9	14
23	Predicting Age From Optical Coherence Tomography Scans With Deep Learning. Translational Vision Science and Technology, 2021, 10, 12.	1.1	13
24	The significantly reduced number of interstitial cells of Cajal in chagasic megacolon (CM) patients might contribute to the pathophysiology of CM. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2012, 461, 385-392.	1.4	12
25	Visual Field Outcomes in the Tube Versus Trabeculectomy Study. Ophthalmology, 2020, 127, 1162-1169.	2.5	12
26	Rates of Glaucoma Progression Derived from Linear Mixed Models Using Varied Random Effect Distributions. Translational Vision Science and Technology, 2022, 11, 16.	1.1	12
27	What Is the Amount of Visual Field Loss Associated With Disability in Glaucoma?. American Journal of Ophthalmology, 2019, 197, 45-52.	1.7	11
28	RetiNerveNet: using recursive deep learning to estimate pointwise 24-2 visual field data based on retinal structure. Scientific Reports, 2021, 11, 12562.	1.6	10
29	Evaluation of contrast sensitivity in patients with advanced glaucoma: comparison of two tests. British Journal of Ophthalmology, 2020, 104, 1418-1422.	2.1	9
30	Corneal hysteresis: ready for prime time?. Current Opinion in Ophthalmology, 2022, 33, 243-249.	1.3	9
31	Mobile Telephone Use and Reaction Time in Drivers With Glaucoma. JAMA Network Open, 2019, 2, e192169.	2.8	8
32	Comparing the Rule of 5 to Trend-based Analysis for Detecting Glaucoma Progression on OCT. Ophthalmology Glaucoma, 2020, 3, 414-420.	0.9	7
33	Longitudinal visual field variability and the ability to detect glaucoma progression in black and white individuals. British Journal of Ophthalmology, 2021, , bjophthalmol-2020-318104.	2.1	7
34	Effect of Diabetes Control on Rates of Structural and Functional Loss in Patients with Glaucoma. Ophthalmology Glaucoma, 2021, 4, 216-223.	0.9	6
35	The development of chagasic megacolon requires severe denervation and the reduction in interstitial cells of Cajal number might be a contributing factor. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2013, 462, 127-127.	1.4	5
36	Event-based analysis of visual field change can miss fast glaucoma progression detected by a combined structure and function index. Graefe's Archive for Clinical and Experimental Ophthalmology, 2018, 256, 1227-1234.	1.0	5

#	Article	IF	CITATIONS
37	The Relationship Between Asymmetries of Corneal Properties and Rates of Visual Field Progression in Glaucoma Patients. Journal of Glaucoma, 2020, 29, 872-877.	0.8	5
38	BLOOD VESSELS IN GANGLIA IN HUMAN ESOPHAGUS MIGHT EXPLAIN THE HIGHER FREQUENCY OF MEGAESOPHAGUS COMPARED WITH MEGACOLON. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2014, 56, 529-532.	0.5	2
39	Diagnosis and Management of Idiopathic Persistent Iritis after Cataract Surgery (IPICS). American Journal of Ophthalmology, 2022, 234, 250-258.	1.7	2
40	C-DU(KE) Calculator: A Clinical Tool for Risk Stratification in Infectious Keratitis. Cornea, 2023, 42, 298-307.	0.9	2
41	Corneal Hysteresis and Rates of Neuroretinal Rim Change in Glaucoma. Ophthalmology Glaucoma, 2022, 5, 483-489.	0.9	2
42	Association between statin use and rates of structural and functional loss in glaucoma. British Journal of Ophthalmology, 2023, 107, 1269-1274.	2.1	1
43	Secondary glaucoma following carotid cavernous fistula. Revista Brasileira De Oftalmologia, 2016, 75,	0.1	0
44	Association between Serum Vitamin D Level and Rates of Structural and Functional Glaucomatous Progression. Journal of Glaucoma, 2022, Publish Ahead of Print, .	0.8	0