
Michiki Takeuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1634172/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>l</scp> -Tryptophan-starved cultivation enhances <i>S</i> -allyl- <scp>l</scp> -cysteine synthesis in various food-related microorganisms. Bioscience, Biotechnology and Biochemistry, 2022, 86, 792-799.	1.3	2
2	Recent trends in the field of lipid engineering. Journal of Bioscience and Bioengineering, 2022, 133, 405-413.	2.2	7
3	Isolation and characterization of indigo-reducing bacteria and analysis of microbiota from indigo fermentation suspensions. Bioscience, Biotechnology and Biochemistry, 2022, 86, 273-281.	1.3	4
4	Semiâ€rational Engineering of a Promiscuous Fatty Acid Hydratase for Alteration of Regioselectivity. ChemBioChem, 2022, 23, e202100606.	2.6	4
5	Quantification of leuco-indigo in indigo-dye-fermenting suspension by normal pulse voltammetry. Journal of Bioscience and Bioengineering, 2022, 134, 84-88.	2.2	3
6	Identification of tryptophanase from Escherichia coli for the synthesis of S-allyl-l-cysteine and related S-substituted cysteine derivatives. Journal of Bioscience and Bioengineering, 2022, 134, 182-186.	2.2	1
7	Characterization of regioselective glycosyltransferase of Rhizobium pusense JCM 16209T useful for resveratrol 4′-O-α-d-glucoside production. Journal of Bioscience and Bioengineering, 2022, 134, 213-219.	2.2	5
8	Characterization of xanthine oxidase from Cellulosimicrobium funkei possessing hypoxanthineâ€metabolizing activity. Journal of Applied Microbiology, 2021, 130, 2132-2140.	3.1	0
9	Mechanistic Insights into Indigo Reduction in Indigo Fermentation: A Voltammetric Study. Electrochemistry, 2021, 89, 25-30.	1.4	14
10	Voltammetric in-situ monitoring of leuco-indigo in indigo-fermenting suspensions. Journal of Bioscience and Bioengineering, 2021, 131, 565-571.	2.2	3
11	Indigo-Mediated Semi-Microbial Biofuel Cell Using an Indigo-Dye Fermenting Suspension. Catalysts, 2021, 11, 1080.	3.5	1
12	A three-component monooxygenase from Rhodococcus wratislaviensis may expand industrial applications of bacterial enzymes. Communications Biology, 2021, 4, 16.	4.4	6
13	Rational Engineering of Hydratase from <i>Lactobacillus acidophilus</i> Reveals Critical Residues Directing Substrate Specificity and Regioselectivity. ChemBioChem, 2020, 21, 550-563.	2.6	23
14	Purification and characterization of molybdenum-containing aldehyde dehydrogenase that oxidizes benzyl maltol derivative from <i>Pseudomonas nitroreducens</i> SB32154. Bioscience, Biotechnology and Biochemistry, 2020, 84, 2390-2400.	1.3	2
15	Cloning of a novel gene involved in alkane biosynthesis from Klebsiella sp. Applied Microbiology and Biotechnology, 2019, 103, 5917-5923.	3.6	1
16	Production of prostaglandin F2α by molecular breeding of an oleaginous fungus Mortierella alpina. Bioscience, Biotechnology and Biochemistry, 2019, 83, 774-780.	1.3	1
17	Efficient enzymatic production of hydroxy fatty acids by linoleic acid Δ9 hydratase from <i>Lactobacillus plantarum</i> AKU 1009a. Journal of Applied Microbiology, 2016, 120, 1282-1288.	3.1	41
18	Production of dicarboxylic acids from novel unsaturated fatty acids by laccase-catalyzed oxidative cleavage. Bioscience, Biotechnology and Biochemistry, 2016, 80, 2132-2137.	1.3	10

Міснікі Такейсні

#	Article	IF	CITATIONS
19	Characterization of hydroxy fatty acid dehydrogenase involved in polyunsaturated fatty acid saturation metabolism in Lactobacillus plantarum AKU 1009a. Journal of Molecular Catalysis B: Enzymatic, 2015, 117, 7-12.	1.8	11
20	Characterization of the linoleic acid Δ9 hydratase catalyzing the first step of polyunsaturated fatty acid saturation metabolism in Lactobacillus plantarum AKU 1009a. Journal of Bioscience and Bioengineering, 2015, 119, 636-641.	2.2	67
21	A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus acidophilus. Journal of Lipid Research, 2015, 56, 1340-1350.	4.2	74
22	Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17808-17813.	7.1	305
23	Hydroxy fatty acid production byPediococcussp European Journal of Lipid Science and Technology, 2013, 115, 386-393.	1.5	24