
Huijuan Yue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1634127/publications.pdf Version: 2024-02-01

HIIIIAN YIIF

#	Article	IF	CITATIONS
1	Three-dimensional nitrogen-doped reduced graphene oxide aerogel decorated with Ni nanoparticles with tunable and unique microwave absorption. Carbon, 2019, 152, 575-586.	10.3	156
2	Electrospun carbon nanofibers with MnS sulfiphilic sites as efficient polysulfide barriers for high-performance wide-temperature-range Li–S batteries. Journal of Materials Chemistry A, 2020, 8, 1212-1220.	10.3	73
3	Simple basic zirconium carbonate: low temperature catalysis for hydrogen transfer of biomass-derived carboxides. Green Chemistry, 2019, 21, 5969-5979.	9.0	61
4	Reduced graphene oxide modified mesoporous FeNi alloy/carbon microspheres for enhanced broadband electromagnetic wave absorbers. Materials Chemistry Frontiers, 2017, 1, 1786-1794.	5.9	56
5	Flower-like NiCo2S4 nanosheets with high electrochemical performance for sodium-ion batteries. Nano Research, 2020, 13, 3041-3047.	10.4	50
6	Enhanced Electrochemical Performance of Li 2 FeSiO 4 /C Positive Electrodes for Lithium-Ion Batteries via Yttrium Doping. Electrochimica Acta, 2016, 188, 636-644.	5.2	47
7	Porous ZnFe2O4 nanospheres as anode materials for Li-ion battery with high performance. Journal of Alloys and Compounds, 2017, 721, 697-704.	5.5	44
8	Mesoporous Li2FeSiO4@ordered mesoporous carbon composites cathode material for lithium-ion batteries. Carbon, 2015, 87, 365-373.	10.3	43
9	Magnetic Fe3O4 nanoparticles as easily separable catalysts for efficient catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol. Applied Catalysis A: General, 2020, 602, 117709.	4.3	39
10	An alkali metal–selenium battery with a wide temperature range and low self-discharge. Journal of Materials Chemistry A, 2019, 7, 21774-21782.	10.3	38
11	Synthesis of graphene-wrapped ZnMn ₂ O ₄ hollow microspheres as high performance anode materials for lithium ion batteries. RSC Advances, 2015, 5, 99107-99114.	3.6	37
12	Economical synthesis of composites of FeNi alloy nanoparticles evenly dispersed in two-dimensional reduced graphene oxide as thin and effective electromagnetic wave absorbers. RSC Advances, 2018, 8, 8393-8401.	3.6	37
13	Nanosheet assembled hollow ZnFe2O4 microsphere as anode for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 762, 480-487.	5.5	37
14	Achieving stable Zn metal anode via a simple NiCo layered double hydroxides artificial coating for high performance aqueous Zn-ion batteries. Chemical Engineering Journal, 2022, 429, 132576.	12.7	33
15	Transfer hydrogenation of methyl levulinate into gamma-valerolactone, 1,4-pentanediol, and 1-pentanol over Cu–ZrO2 catalyst under solvothermal conditions. Catalysis Communications, 2016, 76, 50-53.	3.3	30
16	Morphology-controllable synthesis of spinel zinc manganate with highly reversible capability for lithium ion battery. Chemical Engineering Journal, 2017, 326, 820-830.	12.7	30
17	Fabrication of double core–shell Si-based anode materials with nanostructure for lithium-ion battery. RSC Advances, 2018, 8, 9094-9102.	3.6	28
18	A composite electrodeposited PbO ₂ /SnO ₂ positive electrode material for hybrid supercapacitors. RSC Advances, 2015, 5, 98983-98989.	3.6	26

Huijuan Yue

#	Article	IF	CITATIONS
19	Design of Li2FeSiO4 cathode material for enhanced lithium-ion storage performance. Chemical Engineering Journal, 2020, 379, 122329.	12.7	26
20	Class of Solid-like Electrolytes for Rechargeable Batteries Based on Metal–Organic Frameworks Infiltrated with Liquid Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 43824-43832.	8.0	25
21	A highly efficient Cu/AlOOH catalyst obtained by in situ reduction: Catalytic transfer hydrogenation of ML into Î ³ -GVL. Molecular Catalysis, 2019, 467, 52-60.	2.0	24
22	Porous Bambooâ€Derived Carbon as Selenium Host for Advanced Lithium/Sodium–Selenium Batteries. Energy Technology, 2020, 8, 1901445.	3.8	17
23	Enhanced electrochemical performance of Li2FeSiO4/C cathode materials by surface modification with AlPO4 nanosheets. Electrochimica Acta, 2016, 222, 1870-1877.	5.2	16
24	Reduced graphene oxide wrapped alluaudite Na2+2xFe2-x(SO4)3 with high rate sodium ion storage properties. Journal of Alloys and Compounds, 2018, 752, 267-273.	5.5	16
25	Catalytic transfer hydrogenation of furfural to furfuryl alcohol using easy-to-separate core–shell magnetic zirconium hydroxide. New Journal of Chemistry, 2021, 45, 2715-2722.	2.8	15
26	Oneâ€Pot Transfer Hydrogenation of methyl levulinate into valerolactone and 1,4â€pentanediol over in situ Reduced Cu/ZrOCO3 in 2â€PrOH. ChemistrySelect, 2020, 5, 924-930.	1.5	14
27	A graphitized hierarchical porous carbon as an advanced cathode host for alkali metal-selenium batteries. Chemical Engineering Journal, 2022, 433, 133527.	12.7	13
28	Conductive Fe2N/N-rGO composite boosts electrochemical redox reactions in wide temperature accommodating lithium-sulfur batteries. Chemical Engineering Journal, 2022, 427, 131622.	12.7	12
29	The synergistic effects of nanoporous fiber TiO2 and nickel foam interlayer for ultra-stable performance in lithium-selenium batteries. Journal of Power Sources, 2021, 490, 229534.	7.8	11
30	In situ growth of 1D carbon nanotubes on well-designed 2D Ni/N co-decorated carbon sheets toward excellent electromagnetic wave absorbers. Applied Surface Science, 2021, 569, 150991.	6.1	11
31	Mesoporous core–shell structure NiFe2O4@polypyrrole micro-rod with efficient electromagnetic wave absorption in C, X, Ku wavebands. Journal of Magnetism and Magnetic Materials, 2020, 514, 167268.	2.3	10
32	Humins with Efficient Electromagnetic Wave Absorption: A Byâ€Product of Furfural Conversion to Isopropyl Levulinate via a Tandem Catalytic Reaction in Oneâ€Pot. Chemistry - A European Journal, 2021, 27, 12659-12666.	3.3	7
33	Complex Open-Framework Germanate Built by 8-Coordinated Ge ₁₀ Clusters. Inorganic Chemistry, 2012, 51, 12260-12265.	4.0	6
34	Facile synthesis of mesoporous FeNi-alloyed carbonaceous microspheres as recyclable magnetic adsorbents for trichloroethylene removal. RSC Advances, 2015, 5, 93491-93498.	3.6	5
35	Pressure-induced isostructural phase transition in Ti ₃ AlC ₂ : experimental and theoretical investigation. Physical Chemistry Chemical Physics, 2020, 22, 13136-13142.	2.8	5
36	Constructing durable ultra-high loading and areal capacity lithium/sodium-selenium batteries via a robust aqueous network binder. Chemical Engineering Journal, 2022, 431, 133703.	12.7	5

Huijuan Yue

#	Article	IF	CITATIONS
37	Pressure-induced bandgap engineering and photoresponse enhancement of wurtzite CuInS ₂ nanocrystals. Nanoscale, 2022, 14, 2668-2675.	5.6	5
38	Na2 + 2xFe2-x (SO4)3@rice husks carbon composite as a high-performance cathode material for sodium-ion batteries. Ionics, 2019, 25, 3727-3736.	2.4	3
39	One-step synthesis of 5-ethyl-2-methylpyridine from NH4HCO3 and C2H5OH under hydrothermal condition. Chemical Research in Chinese Universities, 2015, 31, 249-252.	2.6	Ο