
Jörg Bernhardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1634029/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Lichens' Microbiota, Still a Mystery?. Frontiers in Microbiology, 2021, 12, 623839.	3.5	85
2	Influenza A H1N1 Induced Disturbance of the Respiratory and Fecal Microbiome of German Landrace Pigs – a Multi-Omics Characterization. Microbiology Spectrum, 2021, 9, e0018221.	3.0	14
3	The Effect of Allicin on the Proteome of SARS-CoV-2 Infected Calu-3 Cells. Frontiers in Microbiology, 2021, 12, 746795.	3.5	24
4	High productivity in hybrid-poplar plantations without isoprene emission to the atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1596-1605.	7.1	31
5	A Multi-Omics Protocol for Swine Feces to Elucidate Longitudinal Dynamics in Microbiome Structure and Function. Microorganisms, 2020, 8, 1887.	3.6	15
6	The plant-derived naphthoquinone lapachol causes an oxidative stress response in Staphylococcus aureus. Free Radical Biology and Medicine, 2020, 158, 126-136.	2.9	26
7	An optimized metaproteomics protocol for a holistic taxonomic and functional characterization of microbial communities from marine particles. Environmental Microbiology Reports, 2020, 12, 367-376.	2.4	18
8	The MarR-Type Repressor MhqR Confers Quinone and Antimicrobial Resistance in <i>Staphylococcus aureus</i> . Antioxidants and Redox Signaling, 2019, 31, 1235-1252.	5.4	31
9	Staphylococcus aureus responds to allicin by global S-thioallylation – Role of the Brx/BSH/YpdA pathway and the disulfide reductase MerA to overcome allicin stress. Free Radical Biology and Medicine, 2019, 139, 55-69.	2.9	65
10	Improved Wound Healing of Airway Epithelial Cells Is Mediated by Cold Atmospheric Plasma: A Time Course-Related Proteome Analysis. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-21.	4.0	9
11	The Disulfide Stress Response and Protein S-thioallylation Caused by Allicin and Diallyl Polysulfanes in Bacillus subtilis as Revealed by Transcriptomics and Proteomics. Antioxidants, 2019, 8, 605.	5.1	23
12	The human allicin-proteome: S-thioallylation of proteins by the garlic defence substance allicin and its biological effects. Free Radical Biology and Medicine, 2019, 131, 144-153.	2.9	61
13	Protein <i>S</i> -Bacillithiolation Functions in Thiol Protection and Redox Regulation of the Glyceraldehyde-3-Phosphate Dehydrogenase Gap in <i>Staphylococcus aureus</i> Under Hypochlorite Stress. Antioxidants and Redox Signaling, 2018, 28, 410-430.	5.4	58
14	Redox-Sensing Under Hypochlorite Stress and Infection Conditions by the Rrf2-Family Repressor HypR in <i>Staphylococcus aureus</i> . Antioxidants and Redox Signaling, 2018, 29, 615-636.	5.4	51
15	The AGXX® Antimicrobial Coating Causes a Thiol-Specific Oxidative Stress Response and Protein S-bacillithiolation in Staphylococcus aureus. Frontiers in Microbiology, 2018, 9, 3037.	3.5	33
16	Candida albicans biofilm–induced vesicles confer drug resistance through matrix biogenesis. PLoS Biology, 2018, 16, e2006872.	5.6	173
17	Comparative Secretome Analyses of Human and Zoonotic Staphylococcus aureus Isolates CC8, CC22, and CC398. Molecular and Cellular Proteomics, 2018, 17, 2412-2433.	3.8	29
18	Mapping the HLA Ligandome of Colorectal Cancer Reveals an Imprint of Malignant Cell Transformation. Cancer Research, 2018, 78, 4627-4641.	0.9	56

Jörg Bernhardt

#	Article	IF	CITATIONS
19	Holistic Assessment of Rumen Microbiome Dynamics through Quantitative Metatranscriptomics Reveals Multifunctional Redundancy during Key Steps of Anaerobic Feed Degradation. MSystems, 2018, 3, .	3.8	74
20	Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Scientific Reports, 2017, 7, 862.	3.3	115
21	Monitoring global protein thiol-oxidation and protein S-mycothiolation in Mycobacterium smegmatis under hypochlorite stress. Scientific Reports, 2017, 7, 1195.	3.3	47
22	Symbiotic Interplay of Fungi, Algae, and Bacteria within the Lung Lichen <i>Lobaria pulmonaria</i> L. Hoffm. as Assessed by State-of-the-Art Metaproteomics. Journal of Proteome Research, 2017, 16, 2160-2173.	3.7	43
23	Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases. Plant Physiology, 2017, 173, 1434-1452.	4.8	114
24	Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome. MBio, 2017, 8, .	4.1	219
25	The glyceraldehyde-3-phosphate dehydrogenase GapDH of Corynebacterium diphtheriae is redox-controlled by protein S-mycothiolation under oxidative stress. Scientific Reports, 2017, 7, 5020.	3.3	24
26	An essential regulatory function of the DnaK chaperone dictates the decision between proliferation and maintenance in Caulobacter crescentus. PLoS Genetics, 2017, 13, e1007148.	3.5	28
27	A proteomic approach for the identification of immunotoxic properties of Tulipalin A. Proteomics, 2016, 16, 2997-3008.	2.2	3
28	Costs of life - Dynamics of the protein inventory of Staphylococcus aureus during anaerobiosis. Scientific Reports, 2016, 6, 28172.	3.3	38
29	Modulation of Protein <i>S</i> -Nitrosylation by Isoprene Emission in Poplar. Plant Physiology, 2016, 170, 1945-1961.	4.8	39
30	A Metaproteomics Approach to Elucidate Host and Pathogen Protein Expression during Catheter-Associated Urinary Tract Infections (CAUTIs). Molecular and Cellular Proteomics, 2015, 14, 989-1008.	3.8	63
31	Visual account of protein investment in cellular functions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8488-8493.	7.1	304
32	Highly Precise Quantification of Protein Molecules per Cell During Stress and Starvation Responses in Bacillus subtilis. Molecular and Cellular Proteomics, 2014, 13, 2260-2276.	3.8	44
33	Data visualization in environmental proteomics. Proteomics, 2013, 13, 2805-2821.	2.2	21