
Danuta Barnat-Hunek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1633430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnesia-based cement composites with recycled waste tire rubber filler. AIP Conference Proceedings, 2022, , .	0.3	1
2	Axial and Shear Buckling Analysis of Multiscale FGM Carbon Nanotube Plates Using the MTSDT Model: A Numerical Approach. Materials, 2022, 15, 2401.	1.3	4
3	Static Analysis of Skew Functionally Graded Plate Using Novel Shear Deformation Theory. Materials, 2022, 15, 4633.	1.3	1
4	Dynamic Response of Angle Ply Laminates with Uncertainties Using MARS, ANN-PSO, GPR and ANFIS. Materials, 2021, 14, 395.	1.3	18
5	Properties of multi-layer renders with fly ash and boiler slag admixtures for salt-laden masonry. Construction and Building Materials, 2021, 278, 122366.	3.2	19
6	Physical Properties and Durability of Lime-Cement Mortars Prepared with Water Containing Micro-Nano Bubbles of Various Gases. Materials, 2021, 14, 1902.	1.3	7
7	An integrated texture analysis and machine learning approach for durability assessment of lightweight cement composites with hydrophobic coatings modified by nanocellulose. Measurement: Journal of the International Measurement Confederation, 2021, 179, 109538.	2.5	23
8	Influence of Biodegradable Release Oils on the Physical and Mechanical Properties of Light-Colored Architectural Concrete. Materials, 2021, 14, 4630.	1.3	4
9	Durability of Hydrophobic/Icephobic Coatings in Protection of Lightweight Concrete with Waste Aggregate. Materials, 2021, 14, 101.	1.3	15
10	Effect of natural release oils on concrete wettability. AIP Conference Proceedings, 2021, , .	0.3	0
11	The hydrophobization of high strength concretes with plastic waste. AIP Conference Proceedings, 2020, , .	0.3	2
12	Surface hydrophobisation of mortars with waste aggregate by nanopolymer trietoxi-isobutyl-silane and methyl silicon resin. Construction and Building Materials, 2020, 264, 120175.	3.2	9
13	Flexural Behavior of Composite Concrete Slabs Made with Steel and Polypropylene Fibers Reinforced Concrete in the Compression Zone. Materials, 2020, 13, 3616.	1.3	9
14	Surface Modification of Lightweight Mortars by Nanopolymers to Improve Their Water-Repellency and Durability. Materials, 2020, 13, 1350.	1.3	12
15	Rhombic Laminates with Mass Variations under Dual-Axis Compression. Journal of Aerospace Engineering, 2020, 33, 04020013.	0.8	3
16	Properties of Fibrous Concrete Made with Plastic Optical Fibers from E-Waste. Materials, 2020, 13, 2414.	1.3	31
17	The microstructural and physical properties of renovation renders with clinoptilolite, Na-P1 and Na-X zeolites. Construction and Building Materials, 2020, 261, 120016.	3.2	16
18	Influence of Recycled High-Performance Aggregate on Deformation and Load-Carrying Capacity of Reinforced Concrete Beams. Materials, 2020, 13, 186.	1.3	13

#	Article	IF	CITATIONS
19	Evaluation of the contact angle and wettability of hydrophobised lightweight concrete with sawdust. Budownictwo I Architektura, 2020, 19, 019-032.	0.1	3
20	Moisture measurements of the chalk rock walls from Kazimierz Dolny with the application of TDR method. Budownictwo I Architektura, 2020, 2, 125-140.	0.1	0
21	The analysis of heat conductivity coefficient of the aerated concrete building barriers depending on moisture changes. Budownictwo I Architektura, 2020, 8, 107-116.	0.1	0
22	Valuation of possibility of the silicon based preparations application for strengthening Lublin-type mouldings. Budownictwo I Architektura, 2020, 12, 071-080.	0.1	0
23	Valuation of the capillary uptake phenomenon in the wall of the historic building using the surface TDR probe. Budownictwo I Architektura, 2020, 12, 083-093.	0.1	0
24	Changes of wetting properties and surface free energy at the time of hydrophobized concretes with boiler slag and coal combustion dust. AIP Conference Proceedings, 2020, , .	0.3	3
25	Is TDR method applicable for moisture content measurement in salt laden materials?. AIP Conference Proceedings, 2020, , .	0.3	2
26	Effect of cellulose nanofibrils and nanocrystals on physical properties of concrete. Construction and Building Materials, 2019, 223, 1-11.	3.2	57
27	Wettability and Surface Free Energy of Mineral-Asphalt Mixtures with Dolomite and Recycled Aggregate. IOP Conference Series: Materials Science and Engineering, 2019, 471, 032011.	0.3	5
28	Physical Properties of Mineral and Recycled Aggregates Used to Mineral-Asphalt Mixtures. Materials, 2019, 12, 3437.	1.3	12
29	Thermal and moisture concentration effects on laminated composite hypars. AIP Conference Proceedings, 2019, , .	0.3	0
30	Behavior of laminated composite skew plates under different temperature variations. AIP Conference Proceedings, 2019, , .	0.3	0
31	Utilization of Recycled Liquid Crystal Display (LCD) Panel Waste in Concrete. Materials, 2019, 12, 2941.	1.3	22
32	Bi-Axial Buckling of Laminated Composite Plates Including Cutout and Additional Mass. Materials, 2019, 12, 1750.	1.3	16
33	The analysis of influence of polymer admixtures on properties of lightweight concrete. MATEC Web of Conferences, 2019, 252, 08007.	0.1	1
34	Effect of Eco-Friendly Cellulose Nanocrystals on Physical Properties of Cement Mortars. Polymers, 2019, 11, 2088.	2.0	30
35	Investigation of porosity effect on flexural analysis of doubly curved FGM conoids. Science and Engineering of Composite Materials, 2019, 26, 435-448.	0.6	4
36	Influence of temperature difference on thermal conductivity of lightweight mortars with waste aggregate. AIP Conference Proceedings, 2019, , .	0.3	4

#	Article	IF	CITATIONS
37	Hygrothermal Analysis of Laminated Composite Skew Conoids. Materials, 2019, 12, 225.	1.3	8
38	The Possibility of Utilization of Sewage Sludge as a Filler in Production of the Lightweight Aggregate Concrete. Ecological Chemistry and Engineering S, 2019, 26, 559-570.	0.3	1
39	The Possibility of Using Boiler Slag as Coarse Aggregate in High Strength Concrete. KSCE Journal of Civil Engineering, 2018, 22, 1816-1826.	0.9	4
40	Property Assessment of Hybrid Fiber-Reinforced Ultra-High-Performance Concrete. International Journal of Civil Engineering, 2018, 16, 593-606.	0.9	60
41	A Noninvasive TDR Sensor to Measure the Moisture Content of Rigid Porous Materials. Sensors, 2018, 18, 3935.	2.1	28
42	Effect of surface moisture on the effectiveness of the hydrophobisation of mortars with pumice aggregate. AIP Conference Proceedings, 2018, , .	0.3	1
43	Flexural and Free Vibration Analysis of CNT-Reinforced Functionally Graded Plate. Materials, 2018, 11, 2387.	1.3	22
44	Effect of Mass Variation on Vibration of a Functionally Graded Material Plate. AIAA Journal, 2018, 56, 4626-4631.	1.5	6
45	Dynamic response with mass variation of laminated composite twisted plates. Journal of Mechanical Science and Technology, 2018, 32, 4145-4152.	0.7	12
46	Impact of Different Binders on the Roughness, Adhesion Strength, and Other Properties of Mortars with Expanded Cork. Materials, 2018, 11, 364.	1.3	34
47	Comparison of invasive and non-invasive TDR sensors features for moisture evaluation of the building materials. AIP Conference Proceedings, 2018, , .	0.3	0
48	Application of Recycled Ceramic Aggregates for the Production of Mineral-Asphalt Mixtures. Materials, 2018, 11, 658.	1.3	20
49	Cement kiln dust. , 2018, , 149-180.		10
50	Effect of Polysiloxanes on Roughness and Durability of Basalt Fibres–Reinforced Cement Mortar. Polymers, 2018, 10, 420.	2.0	24
51	Static and Dynamic Response of FG-CNT-Reinforced Rhombic Laminates. Applied Sciences (Switzerland), 2018, 8, 834.	1.3	11
52	The Microstructure-Mechanical Properties of Hybrid Fibres-Reinforced Self-Compacting Lightweight Concrete with Perlite Aggregate. Materials, 2018, 11, 1093.	1.3	19
53	Hydrophobisation of mortars containing waste polyurethane foam. MATEC Web of Conferences, 2018, 163, 04006.	0.1	8
54	Impact of roughness on the wettability of mortars with basalt fibres hydrophobised by nanopolymers solution. AIP Conference Proceedings, 2018, , .	0.3	2

#	Article	IF	CITATIONS
55	Hydrophobization of Lime Composites with Lignocellulosic Raw Materials from Flax. Journal of Natural Fibers, 2017, 14, 609-620.	1.7	15
56	Influence of various parameters on strength and absorption properties of fly ash based geopolymer concrete designed by Taguchi method. Construction and Building Materials, 2017, 150, 817-824.	3.2	61
57	The use of zeolite, lightweight aggregate and boiler slag in restoration renders. Construction and Building Materials, 2017, 142, 162-174.	3.2	40
58	Properties of Hemp–Flax Composites for Use in the Building Industry. Journal of Natural Fibers, 2017, 14, 410-425.	1.7	21
59	Effect of bacteria on strength, permeation characteristics and micro-structure of silica fume concrete. Construction and Building Materials, 2017, 142, 92-100.	3.2	97
60	Evaluation of the contact angle and frost resistance of hydrophobised heat-insulating mortars with polystyrene. AIP Conference Proceedings, 2017, , .	0.3	3
61	Properties of hydrophobised lightweight mortars with expanded cork. Construction and Building Materials, 2017, 155, 15-25.	3.2	46
62	Influence of aggregate type and chemical admixtures on frost resistance of lightweight mortars. AIP Conference Proceedings, 2017, , .	0.3	1
63	Effect of Fiber Hybridization on Durability Related Properties of Ultra-High Performance Concrete. International Journal of Concrete Structures and Materials, 2017, 11, 315-325.	1.4	48
64	Composite Materials Based on Hemp and Flax for Low-Energy Buildings. Materials, 2017, 10, 510.	1.3	70
65	Processes of Fatigue Destruction in Nanopolymer-Hydrophobised Ceramic Bricks. Materials, 2017, 10, 44.	1.3	14
66	Mechanical and Physical Properties of Hydrophobized Lightweight Aggregate Concrete with Sewage Sludge. Materials, 2016, 9, 317.	1.3	47
67	Mechanical and durability related properties of high performance concrete made with coal cinder and waste foundry sand. Construction and Building Materials, 2016, 121, 9-17.	3.2	55
68	Utilization of sewage sludge in the manufacture of lightweight aggregate. Environmental Monitoring and Assessment, 2016, 188, 10.	1.3	66
69	Effect of hydrophobisation on durability related properties of ceramic brick. Construction and Building Materials, 2016, 111, 275-285.	3.2	21
70	Influence of hydrophobisation on surface free energy of hybrid fiber reinforced ultra-high performance concrete. Construction and Building Materials, 2016, 102, 367-377.	3.2	44
71	Hydrofobizowane tynki z zeolitem. MateriaÅy Budowlane, 2016, 1, 16-18.	0.0	1
72	Evaluation of the Contact Angle of Hydrophobised Lightweight-Aggregate Concrete with Sewage Sludge. Ecological Chemistry and Engineering S, 2015, 22, 625-635.	0.3	10

#	Article	IF	CITATIONS
73	Increased water repellence of ceramic buildings by hydrophobisation using high concentration of organic solvents. Energy and Buildings, 2015, 103, 249-260.	3.1	18
74	Surface free energy of hydrophobic coatings of hybrid-fiber-reinforced high-performance concrete. Materiali in Tehnologije, 2015, 49, 895-902.	0.3	4
75	Fracture properties of plain and steel-polypropylene-fiber-reinforced high-performance concrete. Materiali in Tehnologije, 2015, 49, 563-571.	0.3	13
76	Free of Volatile Organic Compounds Protection against Moisture in Building Materials/Zabezpieczenia Przegród Budowlanych Przed WilgociÄ Wolne Od Lotnych ZwiÄzków Organicznych. Ecological Chemistry and Engineering S, 2014, 21, 401-411.	0.3	15
77	Methodology of Moisture Measurement in Porous Materials Using Time Domain Reflectometry / Metodyka Prowadzenia BadaÅ,, WilgotnoÅ›ci W OÅ›rodkach Porowatych Za PomocÄ Reflektometrii W Domenie Czasu. Chemistry, Didactics, Ecology, Metrology, 2014, 19, 97-107.	0.1	3
78	The Influence of the Natural Aggregate Roughness on the ITZ Adhesion in Concrete. Materials Science Forum, 0, 931, 564-567.	0.3	14
79	The Effectiveness of Hydrophobisation of Porous Building Materials by Using the Polymers and Nanopolymers Solutions, International Journal of Materials Science and Engineering, O	0.1	5