Carol S Lim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1633270/publications.pdf

Version: 2024-02-01

430874 395702 1,147 40 18 33 citations h-index g-index papers 41 41 41 1544 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Roadmap to affinity-tuned antibodies for enhanced chimeric antigen receptor T cell function and selectivity. Trends in Biotechnology, 2022, 40, 875-890.	9.3	17
2	Advances in delivery vectors for gene therapy in liver cancer. Therapeutic Delivery, 2020, 11, 833-850.	2.2	18
3	p53-Bad: A Novel Tumor Suppressor/Proapoptotic Factor Hybrid Directed to the Mitochondria for Ovarian Cancer Gene Therapy. Molecular Pharmaceutics, 2019, 16, 3386-3398.	4.6	15
4	Mitochondrially targeted p53 or DBD subdomain is superior to wild type p53 in ovarian cancer cells even with strong dominant negative mutant p53. Journal of Ovarian Research, 2019, 12, 45.	3.0	7
5	Narrowing the field: cancer-specific promoters for mitochondrially-targeted p53-BH3 fusion gene therapy in ovarian cancer. Journal of Ovarian Research, 2019, 12, 38.	3.0	9
6	Computational Modeling of Stapled Peptides toward a Treatment Strategy for CML and Broader Implications in the Design of Lengthy Peptide Therapeutics. Journal of Physical Chemistry B, 2018, 122, 3864-3875.	2.6	11
7	Application of Thiol–yne/Thiol–ene Reactions for Peptide and Protein Macrocyclizations. Chemistry - A European Journal, 2017, 23, 7087-7092.	3.3	36
8	Delivery of drugs and macromolecules to the mitochondria for cancer therapy. Journal of Controlled Release, 2016, 240, 38-51.	9.9	101
9	Inhibition of Bcr-Abl in Human Leukemic Cells with a Coiled-Coil Protein Delivered by a Leukemia-Specific Cell-Penetrating Peptide. Molecular Pharmaceutics, 2015, 12, 1412-1421.	4.6	8
10	Resistant mutations in CML and Ph+ALL – role of ponatinib. Biologics: Targets and Therapy, 2014, 8, 243.	3.2	65
11	Delivery of a Monomeric p53 Subdomain with Mitochondrial Targeting Signals from Pro-Apoptotic Bak or Bax. Pharmaceutical Research, 2014, 31, 2503-2515.	3.5	15
12	Re-Engineered p53 Chimera with Enhanced Homo-Oligomerization That Maintains Tumor Suppressor Activity. Molecular Pharmaceutics, 2014, 11, 2442-2452.	4.6	7
13	Multidomain Targeting of Bcr-Abl by Disruption of Oligomerization and Tyrosine Kinase Inhibition: Toward Eradication of CML. Molecular Pharmaceutics, 2013, 10, 3475-3483.	4.6	12
14	The DNA Binding Domain of p53 Is Sufficient To Trigger a Potent Apoptotic Response at the Mitochondria. Molecular Pharmaceutics, 2013, 10, 3592-3602.	4.6	18
15	A Chimeric p53 Evades Mutant p53 Transdominant Inhibition in Cancer Cells. Molecular Pharmaceutics, 2013, 10, 3922-3933.	4.6	18
16	Controlled Access of p53 to the Nucleus Regulates Its Proteasomal Degradation by MDM2. Molecular Pharmaceutics, 2013, 10, 1340-1349.	4.6	14
17	A Single Mutant, A276S of p53, Turns the Switch to Apoptosis. Molecular Pharmaceutics, 2013, 10, 1350-1359.	4.6	10
18	Targeting malignant mitochondria with therapeutic peptides. Therapeutic Delivery, 2012, 3, 961-979.	2.2	39

#	Article	IF	Citations
19	Utilizing the Estrogen Receptor Ligand-Binding Domain for Controlled Protein Translocation to the Insoluble Fraction. Pharmaceutical Research, 2012, 29, 3455-3463.	3.5	3
20	Direct Induction of Apoptosis Using an Optimal Mitochondrially Targeted p53. Molecular Pharmaceutics, 2012, 9, 1449-1458.	4.6	33
21	Improved Coiled-Coil Design Enhances Interaction with Bcr-Abl and Induces Apoptosis. Molecular Pharmaceutics, 2012, 9, 187-195.	4.6	23
22	Enhanced and Selective Killing of Chronic Myelogenous Leukemia Cells with an Engineered BCR-ABL Binding Protein and Imatinib. Molecular Pharmaceutics, 2012, 9, 3318-3329.	4.6	11
23	Changing the Subcellular Location of the Oncoprotein Bcr-Abl Using Rationally Designed Capture Motifs. Pharmaceutical Research, 2012, 29, 1098-1109.	3.5	16
24	Selective Targeting of c-Abl via a Cryptic Mitochondrial Targeting Signal Activated by Cellular Redox Status in Leukemic and Breast Cancer Cells. Pharmaceutical Research, 2012, 29, 2317-2328.	3.5	10
25	The Androgen Receptor and Its Use in Biological Assays: Looking Toward Effect-Based Testing and Its Applications. Journal of Analytical Toxicology, 2011, 35, 594-607.	2.8	19
26	Disruption of Bcr-Abl Coiled Coil Oligomerization by Design. Journal of Biological Chemistry, 2011, 286, 27751-27760.	3.4	28
27	The nuclear translocation assay for intracellular protein-protein interactions and its application to the Bcr coiled-coil domain. BioTechniques, 2010, 49, 519-524.	1.8	12
28	Controlling subcellular delivery to optimize therapeutic effect. Therapeutic Delivery, 2010, 1, 169-193.	2.2	45
29	Controlling subcellular localization to alter function: Sending oncogenic Bcr–Abl to the nucleus causes apoptosis. Journal of Controlled Release, 2009, 140, 245-249.	9.9	21
30	Optimizing the protein switch: Altering nuclear import and export signals, and ligand binding domain. Journal of Controlled Release, 2007, 120, 220-232.	9.9	24
31	Signal Sequences for Targeting of Gene Therapy Products to Subcellular Compartments: The Role Of CRM1 in Nucleocytoplasmic Shuttling of the Protein Switch. Pharmaceutical Research, 2007, 24, 2146-2155.	3.5	9
32	Geldanamycin, an inhibitor of Hsp90, Blocks cytoplasmic retention of progesterone receptors and glucocorticoid receptors via their respective ligand binding domains. AAPS Journal, 2006, 8, E718-E728.	4.4	14
33	Controlling Protein Compartmentalization to Overcome Disease. Pharmaceutical Research, 2006, 24, 17-27.	3.5	55
34	Effect of Initial Subcellular Localization of Progesterone Receptor on Import Kinetics and Transcriptional Activity. Molecular Pharmaceutics, 2005, 2, 509-518.	4.6	20
35	Correlation among agonist dose, rate of import, and transcriptional activity of liganded progesterone receptor B isoform in living cells. Pharmaceutical Research, 2003, 20, 1574-1580.	3.5	7
36	Model system to study classical nuclear export signals. AAPS PharmSci, 2002, 4, 61-68.	1.3	24

#	Article	IF	CITATION
37	Trafficking of nuclear receptors in living cells. Journal of Steroid Biochemistry and Molecular Biology, 2000, 74, 249-254.	2.5	118
38	Differential Localization and Activity of the A- and B-Forms of the Human Progesterone Receptor Using Green Fluorescent Protein Chimeras. Molecular Endocrinology, 1999, 13, 366-375.	3.7	135
39	Intracellular localization and trafficking of steroid receptors. Cell Biochemistry and Biophysics, 1999, 31, 119-127.	1.8	46
40	Differential Localization and Activity of the A- and B-Forms of the Human Progesterone Receptor Using Green Fluorescent Protein Chimeras. Molecular Endocrinology, 1999, 13, 366-375.	3.7	38