Yves De Repentigny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1632911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SMN Depleted Mice Offer a Robust and Rapid Onset Model of Nonalcoholic Fatty Liver Disease. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 354-377.e3.	2.3	16
2	Dystonin loss-of-function leads to impaired autophagosome–endolysosome pathway dynamics. Biochemistry and Cell Biology, 2021, 99, 364-373.	0.9	4
3	Characterization of gastrointestinal pathologies in the dystonia musculorum mouse model for hereditary sensory and autonomic neuropathy type VI. Neurogastroenterology and Motility, 2020, 32, e13773.	1.6	0
4	Motor transmission defects with sex differences in a new mouse model of mild spinal muscular atrophy. EBioMedicine, 2020, 55, 102750.	2.7	17
5	Metformin promotes CNS remyelination and improves social interaction following focal demyelination through CBP Ser436 phosphorylation. Experimental Neurology, 2020, 334, 113454.	2.0	13
6	Pathologic Alterations in the Proteome of Synaptosomes from a Mouse Model of Spinal Muscular Atrophy. Journal of Proteome Research, 2019, 18, 3042-3051.	1.8	6
7	Snf2h Drives Chromatin Remodeling to Prime Upper Layer Cortical Neuron Development. Frontiers in Molecular Neuroscience, 2019, 12, 243.	1.4	15
8	Dystonin-A3 upregulation is responsible for maintenance of tubulin acetylation in a less severe‹i>dystonia musculorum‹/i>mouse model for hereditary sensory and autonomic neuropathy type VI. Human Molecular Genetics, 2018, 27, 3598-3611.	1.4	9
9	Oligodendrocyte development and CNS myelination are unaffected in a mouse model of severe spinal muscular atrophy. Human Molecular Genetics, 2017, 26, ddw385.	1.4	9
10	Survival Motor Neuron Protein is Released from Cells in Exosomes: A Potential Biomarker for Spinal Muscular Atrophy. Scientific Reports, 2017, 7, 13859.	1.6	13
11	Immune dysregulation may contribute to disease pathogenesis in spinal muscular atrophy mice. Human Molecular Genetics, 2017, 26, ddw434.	1.4	44
12	Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination. PLoS ONE, 2016, 11, e0149201.	1.1	6
13	Establishment of a cone photoreceptor transplantation platform based on a novel cone-GFP reporter mouse line. Scientific Reports, 2016, 6, 22867.	1.6	39
14	Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. Cell Reports, 2016, 17, 862-875.	2.9	39
15	Differential induction of muscle atrophy pathways in two mouse models of spinal muscular atrophy. Scientific Reports, 2016, 6, 28846.	1.6	24
16	Disruption in the autophagic process underlies the sensory neuropathy in <i>dystonia musculorum</i> mice. Autophagy, 2015, 11, 1025-1036.	4.3	24
17	Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation. Nature Communications, 2014, 5, 4181.	5.8	71
18	Myogenic program dysregulation is contributory to disease pathogenesis in spinal muscular atrophy. Human Molecular Genetics, 2014, 23, 4249-4259.	1.4	59

#	Article	IF	CITATIONS
19	Transgenic expression of neuronal dystonin isoform 2 partially rescues the disease phenotype of the dystonia musculorum mouse model of hereditary sensory autonomic neuropathy VI. Human Molecular Genetics, 2014, 23, 2694-2710.	1.4	38
20	Neuronal dystonin isoform 2 is a mediator of endoplasmic reticulum structure and function. Molecular Biology of the Cell, 2012, 23, 553-566.	0.9	39
21	Microtubule stability, Golgi organization, and transport flux require dystonin-a2–MAP1B interaction. Journal of Cell Biology, 2012, 196, 727-742.	2.3	60
22	Motor Unit Abnormalities in Dystonia musculorum Mice. PLoS ONE, 2011, 6, e21093.	1.1	21
23	Production of mouse chimeras by injection of embryonic stem cells into the perivitelline space of one-cell stage embryos. Transgenic Research, 2010, 19, 1137-1144.	1.3	13
24	Characterization of liver histopathology in a transgenic mouse model expressing genotype 1a hepatitis C virus core and envelope proteins 1 and 2. Journal of General Virology, 2005, 86, 2185-2196.	1.3	71
25	Acf7 (MACF) is an actin and microtubule linker protein whose expression predominates in neural, muscle, and lung development. Developmental Dynamics, 2000, 219, 216-225.	0.8	52
26	Dystonin Is Essential for Maintaining Neuronal Cytoskeleton Organization. Molecular and Cellular Neurosciences, 1998, 10, 243-257.	1.0	103
27	Dystonin Expression in the Developing Nervous System Predominates in the Neurons That Degenerate indvstonia musculorumMutant Mice. Molecular and Cellular Neurosciences, 1995, 6, 509-520	1.0	55