Indrajit Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1632783/publications.pdf

Version: 2024-02-01

22 2,435 19 20 papers citations h-index g-index

22 22 4960 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	MAIT Cells Promote Tumor Initiation, Growth, and Metastases via Tumor MR1. Cancer Discovery, 2020, 10, 124-141.	9.4	101
2	Eomes-Dependent Loss of the Co-activating Receptor CD226 Restrains CD8+ T Cell Anti-tumor Functions and Limits the Efficacy of Cancer Immunotherapy. Immunity, 2020, 53, 824-839.e10.	14.3	85
3	CD155 on Tumor Cells Drives Resistance to Immunotherapy by Inducing the Degradation of the Activating Receptor CD226 in CD8+ TÂCells. Immunity, 2020, 53, 805-823.e15.	14.3	79
4	The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nature Immunology, 2020, 21, 1205-1218.	14.5	110
5	Target-Based Discovery of an Inhibitor of the Regulatory Phosphatase PPP1R15B. Cell, 2018, 174, 1216-1228.e19.	28.9	103
6	CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. Journal of Clinical Investigation, 2018, 128, 2613-2625.	8.2	91
7	Colonic microbiota can promote rapid local improvement of murine colitis by thioguanine independently of T lymphocytes and host metabolism. Gut, 2017, 66, 59-69.	12.1	65
8	Reactive Neutrophil Responses Dependent on the Receptor Tyrosine Kinase c-MET Limit Cancer Immunotherapy. Immunity, 2017, 47, 789-802.e9.	14.3	207
9	qMotor, a set of rules for sensitive, robust and quantitative measurement of motor performance in mice. Nature Protocols, 2017, 12, 1451-1457.	12.0	14
10	Neutralizing IL-23 Is Superior to Blocking IL-17 in Suppressing Intestinal Inflammation in a Spontaneous Murine Colitis Model. Inflammatory Bowel Diseases, 2015, 21, 973-984.	1.9	40
11	Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science, 2015, 348, 239-242.	12.6	358
12	Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nature Medicine, 2014, 20, 1417-1426.	30.7	208
13	IL-10 Promotes Production of Intestinal Mucus by Suppressing Protein Misfolding and Endoplasmic Reticulum Stress in Goblet Cells. Gastroenterology, 2013, 144, 357-368.e9.	1.3	190
14	MUC1 and MUC13 differentially regulate epithelial inflammation in response to inflammatory and infectious stimuli. Mucosal Immunology, 2013, 6, 557-568.	6.0	112
15	A novel mouse model of veno-occlusive disease provides strategies to prevent thioguanine-induced hepatic toxicity. Gut, 2013, 62, 594-605.	12.1	48
16	Glucocorticoids alleviate intestinal ER stress by enhancing protein folding and degradation of misfolded proteins. Journal of Experimental Medicine, 2013, 210, 1201-1216.	8.5	88
17	Glucocorticoids alleviate intestinal ER stress by enhancing protein folding and degradation of misfolded proteins. Journal of Cell Biology, 2013, 201, i7-i7.	5.2	0
18	The interplay between endoplasmic reticulum stress and inflammation. Immunology and Cell Biology, 2012, 90, 260-270.	2.3	226

Indrajit Das

#	Article	IF	CITATION
19	629 Intestinal Endoplasmic Reticulum Stress is Modulated by Inflammatory Cytokines. Gastroenterology, 2012, 142, S-124.	1.3	0
20	Intestinal secretory cell ER stress and inflammation. Biochemical Society Transactions, 2011, 39, 1081-1085.	3.4	45
21	An intestinal epithelial defect conferring ER stress results in inflammation involving both innate and adaptive immunity. Mucosal Immunology, 2011, 4, 354-364.	6.0	114
22	ER stress and the unfolded protein response in intestinal inflammation. American Journal of Physiology - Renal Physiology, 2010, 298, G820-G832.	3.4	151