
Lichao Mou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1632627/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geoscience and Remote Sensing Magazine, 2017, 5, 8-36.	9.6	1,976
2	Deep Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 3639-3655.	6.3	937
3	Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 924-935.	6.3	346
4	Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection. Remote Sensing, 2016, 8, 506.	4.0	240
5	Unsupervised Spectral–Spatial Feature Learning via Deep Residual Conv–Deconv Network for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 391-406.	6.3	217
6	Nonlocal Graph Convolutional Networks for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 8246-8257.	6.3	165
7	Identifying Corresponding Patches in SAR and Optical Images With a Pseudo-Siamese CNN. IEEE Geoscience and Remote Sensing Letters, 2018, 15, 784-788.	3.1	162
8	HSF-Net: Multiscale Deep Feature Embedding for Ship Detection in Optical Remote Sensing Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 7147-7161.	6.3	147
9	Deep Learning Meets SAR: Concepts, models, pitfalls, and perspectives. IEEE Geoscience and Remote Sensing Magazine, 2021, 9, 143-172.	9.6	144
10	Vehicle Instance Segmentation From Aerial Image and Video Using a Multitask Learning Residual Fully Convolutional Network. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 6699-6711.	6.3	140
11	A Relation-Augmented Fully Convolutional Network for Semantic Segmentation in Aerial Scenes. , 2019, , .		129
12	Relation Matters: Relational Context-Aware Fully Convolutional Network for Semantic Segmentation of High-Resolution Aerial Images. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 7557-7569.	6.3	122
13	Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149, 188-199.	11.1	111
14	Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154, 151-162.	11.1	101
15	So2Sat LCZ42: A Benchmark Data Set for the Classification of Global Local Climate Zones [Software and Remote Sensing Magazine, 2020, 8, 76-89.	9.6	74
16	HED-UNet: Combined Segmentation and Edge Detection for Monitoring the Antarctic Coastline. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	6.3	70
17	Relation Network for Multilabel Aerial Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 4558-4572.	6.3	62
18	Semisupervised Change Detection Using Graph Convolutional Network. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 607-611.	3.1	57

LICНАО МОU

#	Article	IF	CITATIONS
19	Incorporating Metric Learning and Adversarial Network for Seasonal Invariant Change Detection. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 2720-2731.	6.3	44
20	Unsupervised Deep Joint Segmentation of Multitemporal High-Resolution Images. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 8780-8792.	6.3	42
21	An Unsupervised Remote Sensing Change Detection Method Based on Multiscale Graph Convolutional Network and Metric Learning. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	6.3	41
22	Bi-Temporal Semantic Reasoning for the Semantic Change Detection in HR Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	6.3	38
23	Spatiotemporal scene interpretation of space videos via deep neural network and tracklet analysis. , 2016, , .		35
24	Semantic Segmentation of Remote Sensing Images With Sparse Annotations. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	34
25	Deep Reinforcement Learning for Band Selection in Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	6.3	32
26	ERA: A Data Set and Deep Learning Benchmark for Event Recognition in Aerial Videos [Software and Data Sets]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8, 125-133.	9.6	23
27	Attention-Aware Pseudo-3-D Convolutional Neural Network for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 7790-7802.	6.3	20
28	Large-scale building height retrieval from single SAR imagery based on bounding box regression networks. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184, 79-95.	11.1	20
29	Fusing Multiseasonal Sentinel-2 Imagery for Urban Land Cover Classification With Multibranch Residual Convolutional Neural Networks. IEEE Geoscience and Remote Sensing Letters, 2020, 17, 1787-1791.	3.1	19
30	Deep Quadruple-Based Hashing for Remote Sensing Image-Sound Retrieval. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	6.3	16
31	CG-Net: Conditional GIS-Aware Network for Individual Building Segmentation in VHR SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	6.3	15
32	Cross-Task Transfer for Geotagged Audiovisual Aerial Scene Recognition. Lecture Notes in Computer Science, 2020, , 68-84.	1.3	15
33	From Easy to Hard: Learning Language-Guided Curriculum for Visual Question Answering on Remote Sensing Data. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	6.3	14
34	Instance Segmentation of Buildings Using Keypoints. , 2020, , .		13
35	Unsupervised Single-Scene Semantic Segmentation for Earth Observation. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	6.3	10
36	Large-scale Building Height Estimation from Single VHR SAR image Using Fully Convolutional Network and GIS building footprints. , 2019, , .		9

LICHAO MOU

#	Article	IF	CITATIONS
37	Unifying Top–Down Views by Task-Specific Domain Adaptation. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 4689-4702.	6.3	9
38	A CNN for the identification of corresponding patches in SAR and optical imagery of urban scenes. , 2017, , .		8
39	Building Footprint Generation Through Convolutional Neural Networks With Attraction Field Representation. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	6.3	7
40	Self-Paced Curriculum Learning for Visual Question Answering on Remote Sensing Data. , 2021, , .		7
41	Dual Adversarial Network for Unsupervised Ground/Satellite-to-Aerial Scene Adaptation. , 2020, , .		6
42	MultiScene: A Large-Scale Dataset and Benchmark for Multiscene Recognition in Single Aerial Images. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	6.3	5
43	Feature Importance Analysis of Sentinel-2 Imagery for Large-Scale Urban Local Climate Zone Classification. , 2018, , .		4
44	Deep Relearning in the Geospatial Domain for Semantic Remote Sensing Image Segmentation. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	3
45	Temporal Relations Matter: A Two-Pathway Network for Aerial Video Recognition. , 2021, , .		2
46	Anomaly Detection in Aerial Videos Via Future Frame Prediction Networks. , 2021, , .		2
47	FuTH-Net: Fusing Temporal Relations and Holistic Features for Aerial Video Classification. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	6.3	2
48	SCIDA: Self-Correction Integrated Domain Adaptation From Single- to Multi-Label Aerial Images. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	6.3	2
49	Hed-Unet: A Multi-Scale Framework for Simultaneous Segmentation and Edge Detection. , 2021, , .		0
50	Unconstrained Aerial Scene Recognition with Deep Neural Networks and a New Dataset. , 2021, , .		0