Christina F Spiropoulou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1631965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunobiology of Crimean-Congo hemorrhagic fever. Antiviral Research, 2022, 199, 105244.	1.9	12
2	Lassa Virus Replicon Particle Vaccine Protects Strain 13/N Guinea Pigs Against Challenge With Geographically and Genetically Diverse Viral Strains. Journal of Infectious Diseases, 2022, 226, 1545-1550.	1.9	7
3	Defective Interfering Viral Particle Treatment Reduces Clinical Signs and Protects Hamsters from Lethal Nipah Virus Disease. MBio, 2022, 13, e0329421.	1.8	14
4	Viral RNA and infectious virus in mucosal specimens from guinea pigs modelling early phases of lethal and non-lethal Lassa fever. Emerging Microbes and Infections, 2022, 11, 1390-1393.	3.0	0
5	Chapare Hemorrhagic Fever and Virus Detection in Rodents in Bolivia in 2019. New England Journal of Medicine, 2022, 386, 2283-2294.	13.9	11
6	Inference of Nipah virus evolution, 1999–2015. Virus Evolution, 2021, 7, veaa062.	2.2	18
7	Design, synthesis and biological evaluation of 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazoles as inhibitors of ebola virus infection. European Journal of Medicinal Chemistry, 2021, 214, 113211.	2.6	9
8	Viral replicon particles protect IFNAR-/- mice against lethal Crimean-Congo hemorrhagic fever virus challenge three days after vaccination. Antiviral Research, 2021, 191, 105090.	1.9	9
9	Screening and Identification of Lujo Virus Inhibitors Using a Recombinant Reporter Virus Platform. Viruses, 2021, 13, 1255.	1.5	7
10	High-throughput quantitation of SARS-CoV-2 antibodies in a single-dilution homogeneous assay. Scientific Reports, 2021, 11, 12330.	1.6	12
11	Sustained Replication of Synthetic Canine Distemper Virus Defective Genomes <i>In Vitro</i> and <i>In Vivo</i> . MSphere, 2021, 6, e0053721.	1.3	9
12	Broad-Spectrum <i>In Vitro</i> Antiviral Activity of ODBC-P-RVn: An Orally-Available, Lipid-Modified Monophosphate Prodrug of Remdesivir Parent Nucleoside (GS-441524). Microbiology Spectrum, 2021, 9, e0153721.	1.2	19
13	In Situ Imaging of Fluorescent Nipah Virus Respiratory and Neurological Tissue Tropism in the Syrian Hamster Model. Journal of Infectious Diseases, 2020, 221, S448-S453.	1.9	11
14	Evaluation of a Single-Dose Nucleoside-Modified Messenger RNA Vaccine Encoding Hendra Virus-Soluble Glycoprotein Against Lethal Nipah virus Challenge in Syrian Hamsters. Journal of Infectious Diseases, 2020, 221, S493-S498.	1.9	32
15	Alterations in Blood Chemistry Levels Associated With Nipah Virus Disease in the Syrian Hamster Model. Journal of Infectious Diseases, 2020, 221, S454-S459.	1.9	6
16	Remdesivir targets a structurally analogous region of the Ebola virus and SARS-CoV-2 polymerases. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26946-26954.	3.3	54
17	Lassa virus antigen distribution and inflammation in the ear of infected strain 13/N Guinea pigs. Antiviral Research, 2020, 183, 104928.	1.9	7
18	Towards a Sustainable One Health Approach to Crimean–Congo Hemorrhagic Fever Prevention: Focus Areas and Gaps in Knowledge. Tropical Medicine and Infectious Disease, 2020, 5, 113.	0.9	34

CHRISTINA F SPIROPOULOU

#	Article	IF	CITATIONS
19	Hantavirus Infection Is Inhibited by Griffithsin in Cell Culture. Frontiers in Cellular and Infection Microbiology, 2020, 10, 561502.	1.8	11
20	Twenty Years of Nipah Virus Research: Where Do We Go From Here?. Journal of Infectious Diseases, 2020, 221, S359-S362.	1.9	15
21	The Crimean-Congo Hemorrhagic Fever Virus NSm Protein Is Dispensable for Growth In Vitro and Disease in Ifnar-/- Mice. Microorganisms, 2020, 8, 775.	1.6	12
22	Inhibition of Nipah Virus by Defective Interfering Particles. Journal of Infectious Diseases, 2020, 221, S460-S470.	1.9	23
23	Griffithsin Inhibits Nipah Virus Entry and Fusion and Can Protect Syrian Golden Hamsters From Lethal Nipah Virus Challenge. Journal of Infectious Diseases, 2020, 221, S480-S492.	1.9	36
24	Potent in vitro activity of β-D-4ʹ-chloromethyl-2ʹ-deoxy-2ʹ-fluorocytidine against Nipah virus. Antiviral Research, 2020, 175, 104712.	1.9	15
25	The use of mice lacking type I or both type I and type II interferon responses in research on hemorrhagic fever viruses. Part 2: Vaccine efficacy studies. Antiviral Research, 2020, 174, 104702.	1.9	16
26	A single mutation in Crimean-Congo hemorrhagic fever virus discovered in ticks impairs infectivity in human cells. ELife, 2020, 9, .	2.8	12
27	Heterologous protection against Crimean-Congo hemorrhagic fever in mice after a single dose of replicon particle vaccine. Antiviral Research, 2019, 170, 104573.	1.9	17
28	Stable Occupancy of the Crimean-Congo Hemorrhagic Fever Virus-Encoded Deubiquitinase Blocks Viral Infection. MBio, 2019, 10, .	1.8	12
29	Suboptimal Handling of Piccolo Samples or Reagent Discs for Consideration in Ebola Response. Emerging Infectious Diseases, 2019, 25, 1238-1240.	2.0	1
30	Characterisation of infectious Ebola virus from the ongoing outbreak to guide response activities in the Democratic Republic of the Congo: a phylogenetic and in vitro analysis. Lancet Infectious Diseases, The, 2019, 19, 1023-1032.	4.6	48
31	Crimean-Congo hemorrhagic fever and expansion from endemic regions. Current Opinion in Virology, 2019, 34, 70-78.	2.6	88
32	Macrophage Activation Marker Soluble CD163 Associated with Fatal and Severe Ebola Virus Disease in Humans1. Emerging Infectious Diseases, 2019, 25, 290-298.	2.0	28
33	A genome-wide CRISPR screen identifies N-acetylglucosamine-1-phosphate transferase as a potential antiviral target for Ebola virus. Nature Communications, 2019, 10, 285.	5.8	46
34	Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge. Science Translational Medicine, 2019, 11, .	5.8	166
35	Lassa Virus Targeting of Anterior Uvea and Endothelium of Cornea and Conjunctiva in Eye of Guinea Pig Model. Emerging Infectious Diseases, 2019, 25, 865-874.	2.0	17
36	Single-dose replicon particle vaccine provides complete protection against Crimean-Congo hemorrhagic fever virus in mice. Emerging Microbes and Infections, 2019, 8, 575-578.	3.0	36

#	Article	IF	CITATIONS
37	A Conserved Basic Patch and Central Kink in the Nipah Virus Phosphoprotein Multimerization Domain Are Essential for Polymerase Function. Structure, 2019, 27, 660-668.e4.	1.6	15
38	Fluorescent Crimean-Congo hemorrhagic fever virus illuminates tissue tropism patterns and identifies early mononuclear phagocytic cell targets in Ifnar-/- mice. PLoS Pathogens, 2019, 15, e1008183.	2.1	19
39	Adaptive Immune Responses in Humans During Nipah Virus Acute and Convalescent Phases of Infection. Clinical Infectious Diseases, 2019, 69, 1752-1756.	2.9	27
40	Use of a Scalable Replicon-Particle Vaccine to Protect Against Lethal Lassa Virus Infection in the Guinea Pig Model. Journal of Infectious Diseases, 2018, 217, 1957-1966.	1.9	26
41	Severity of Disease in Humanized Mice Infected With Ebola Virus or Reston Virus Is Associated With Magnitude of Early Viral Replication in Liver. Journal of Infectious Diseases, 2018, 217, 58-63.	1.9	26
42	Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing. MBio, 2018, 9, .	1.8	58
43	Susceptibility of paramyxoviruses and filoviruses to inhibition by 2′-monofluoro- and 2′-difluoro-4′-azidocytidine analogs. Antiviral Research, 2018, 153, 101-113.	1.9	15
44	Using Humanized Mice to Evaluate the Pathogenesis of Variola Virus and Ebolavirus. Microscopy and Microanalysis, 2018, 24, 1314-1315.	0.2	0
45	Human immune cell engraftment does not alter development of severe acute Rift Valley fever in mice. PLoS ONE, 2018, 13, e0201104.	1.1	2
46	Rift valley fever viral load correlates with the human inflammatory response and coagulation pathway abnormalities in humans with hemorrhagic manifestations. PLoS Neglected Tropical Diseases, 2018, 12, e0006460.	1.3	21
47	The S Genome Segment Is Sufficient to Maintain Pathogenicity in Intra-Clade Lassa Virus Reassortants in a Guinea Pig Model. Frontiers in Cellular and Infection Microbiology, 2018, 8, 240.	1.8	18
48	Initiation, extension, and termination of RNA synthesis by a paramyxovirus polymerase. PLoS Pathogens, 2018, 14, e1006889.	2.1	100
49	Development of a reverse genetics system for Sosuga virus allows rapid screening of antiviral compounds. PLoS Neglected Tropical Diseases, 2018, 12, e0006326.	1.3	10
50	Antibodies Against Henipa-Like Viruses in Brazilian Bats. Vector-Borne and Zoonotic Diseases, 2017, 17, 271-274.	0.6	21
51	Flex-nucleoside analogues – Novel therapeutics against filoviruses. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2800-2802.	1.0	28
52	Crimean-Congo Hemorrhagic Fever in Humanized Mice Reveals Glial Cells as Primary Targets of Neurological Infection. Journal of Infectious Diseases, 2017, 216, 1386-1397.	1.9	43
53	4′-Azidocytidine (R1479) inhibits henipaviruses and other paramyxoviruses with high potency. Antiviral Research, 2017, 144, 147-152.	1.9	38
54	GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Scientific Reports, 2017, 7, 43395.	1.6	373

#	Article	IF	CITATIONS
55	Whole Blood-Based Multiplex Immunoassays for the Evaluation of Human Biomarker Responses to Emerging Viruses in Resource-Limited Regions. Viral Immunology, 2017, 30, 671-674.	0.6	3
56	Identification of 2â€2-deoxy-2â€2-fluorocytidine as a potent inhibitor of Crimean-Congo hemorrhagic fever virus replication using a recombinant fluorescent reporter virus. Antiviral Research, 2017, 147, 91-99.	1.9	52
57	Rapid Determination of Ebolavirus Infectivity in Clinical Samples Using a Novel Reporter Cell Line. Journal of Infectious Diseases, 2017, 216, 1380-1385.	1.9	10
58	Genome Sequences of Crimean-Congo Hemorrhagic Fever Virus Strains Isolated in South Africa, Namibia, and Turkey. Genome Announcements, 2017, 5, .	0.8	7
59	Identification of broadly neutralizing monoclonal antibodies against Crimean-Congo hemorrhagic fever virus. Antiviral Research, 2017, 146, 112-120.	1.9	40
60	Crimean-Congo Hemorrhagic Fever Virus Suppresses Innate Immune Responses via a Ubiquitin and ISG15 Specific Protease. Cell Reports, 2017, 20, 2396-2407.	2.9	64
61	Human immune system mouse models of Ebola virus infection. Current Opinion in Virology, 2017, 25, 90-96.	2.6	20
62	Molecular Insights into Crimean-Congo Hemorrhagic Fever Virus. Viruses, 2016, 8, 106.	1.5	92
63	Endocytic Pathways Used by Andes Virus to Enter Primary Human Lung Endothelial Cells. PLoS ONE, 2016, 11, e0164768.	1.1	21
64	Evaluation of the Activity of Lamivudine and Zidovudine against Ebola Virus. PLoS ONE, 2016, 11, e0166318.	1.1	28
65	25-Hydroxycholesterol Inhibition of Lassa Virus Infection through Aberrant GP1 Glycosylation. MBio, 2016, 7, .	1.8	55
66	InÂvitro antiviral activity of adenosine analog NITD008 against tick-borne flaviviruses. Antiviral Research, 2016, 130, 46-49.	1.9	46
67	Ebola Virus Persistence in Semen of Male Survivors. Clinical Infectious Diseases, 2016, 62, 1552-1555.	2.9	101
68	Ebola Virus Replication and Disease Without Immunopathology in Mice Expressing Transgenes to Support Human Myeloid and Lymphoid Cell Engraftment. Journal of Infectious Diseases, 2016, 214, S308-S318.	1.9	24
69	A chronological review of experimental infection studies of the role of wild animals and livestock in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus. Antiviral Research, 2016, 135, 31-47.	1.9	91
70	Defining antigen-specific plasmablast and memory B cell subsets in human blood after viral infection or vaccination. Nature Immunology, 2016, 17, 1226-1234.	7.0	348
71	Lassa and Ebola virus inhibitors identified using minigenome and recombinant virus reporter systems. Antiviral Research, 2016, 136, 9-18.	1.9	61
72	Effect of Vandetanib on Andes virus survival in the hamster model of Hantavirus pulmonary syndrome. Antiviral Research, 2016, 132, 66-69.	1.9	18

CHRISTINA F SPIROPOULOU

#	Article	IF	CITATIONS
73	The lipid moiety of brincidofovir is required for inÂvitro antiviral activity against Ebola virus. Antiviral Research, 2016, 125, 71-78.	1.9	44
74	Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 2016, 531, 381-385.	13.7	1,245
75	A Molecular Sensor To Characterize Arenavirus Envelope Glycoprotein Cleavage by Subtilisin Kexin Isozyme 1/Site 1 Protease. Journal of Virology, 2016, 90, 705-714.	1.5	11
76	Utility of Oral Swab Sampling for Ebola Virus Detection in Guinea Pig Model. Emerging Infectious Diseases, 2015, 21, 1816-1819.	2.0	16
77	Von Willebrand Factor Is Elevated in Individuals Infected with Sudan Virus and Is Associated with Adverse Clinical Outcomes. Viral Immunology, 2015, 28, 71-73.	0.6	18
78	Human Ebola virus infection results in substantial immune activation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4719-4724.	3.3	274
79	Recovery of Recombinant Crimean Congo Hemorrhagic Fever Virus Reveals a Function for Non-structural Glycoproteins Cleavage by Furin. PLoS Pathogens, 2015, 11, e1004879.	2.1	61
80	The Use of TKM-100802 and Convalescent Plasma in 2 Patients With Ebola Virus Disease in the United States. Clinical Infectious Diseases, 2015, 61, 496-502.	2.9	182
81	Relationship Between Ebola Virus Real-Time Quantitative Polymerase Chain Reaction–Based Threshold Cycle Value and Virus Isolation From Human Plasma. Journal of Infectious Diseases, 2015, 212, S346-S349.	1.9	29
82	RIG-I Mediates an Antiviral Response to Crimean-Congo Hemorrhagic Fever Virus. Journal of Virology, 2015, 89, 10219-10229.	1.5	33
83	Inhibitors of cellular kinases with broad-spectrum antiviral activity for hemorrhagic fever viruses. Antiviral Research, 2015, 120, 40-47.	1.9	59
84	Assessment of Inhibitors of Pathogenic Crimean-Congo Hemorrhagic Fever Virus Strains Using Virus-Like Particles. PLoS Neglected Tropical Diseases, 2015, 9, e0004259.	1.3	37
85	Small Interfering RNA Inhibition of Andes Virus Replication. PLoS ONE, 2014, 9, e99764.	1.1	12
86	Novel Paramyxovirus Associated with Severe Acute Febrile Disease, South Sudan and Uganda, 2012. Emerging Infectious Diseases, 2014, 20, 211-216.	2.0	54
87	Biomarker Correlates of Survival in Pediatric Patients with Ebola Virus Disease. Emerging Infectious Diseases, 2014, 20, 1683-90.	2.0	79
88	Rift Valley Fever Virus Encephalitis Is Associated with an Ineffective Systemic Immune Response and Activated T Cell Infiltration into the CNS in an Immunocompetent Mouse Model. PLoS Neglected Tropical Diseases, 2014, 8, e2874.	1.3	41
89	Biomarkers for understanding Ebola virus disease. Biomarkers in Medicine, 2014, 8, 1053-1056.	0.6	9
90	Inhibitors of the Tick-Borne, Hemorrhagic Fever-Associated Flaviviruses. Antimicrobial Agents and Chemotherapy, 2014, 58, 3206-3216.	1.4	41

6

CHRISTINA F SPIROPOULOU

#	Article	IF	CITATIONS
91	Evaluation of luciferase and GFP-expressing Nipah viruses for rapid quantitative antiviral screening. Antiviral Research, 2014, 106, 53-60.	1.9	34
92	Clinical Care of Two Patients with Ebola Virus Disease in the United States. New England Journal of Medicine, 2014, 371, 2402-2409.	13.9	310
93	Vascular events in viral hemorrhagic fevers: a comparative study of dengue and hantaviruses. Cell and Tissue Research, 2014, 355, 621-633.	1.5	18
94	Single-dose replication-defective VSV-based Nipah virus vaccines provide protection from lethal challenge in Syrian hamsters. Antiviral Research, 2014, 101, 26-29.	1.9	61
95	Kyasanur Forest Disease Virus Infection in Mice Is Associated with Higher Morbidity and Mortality than Infection with the Closely Related Alkhurma Hemorrhagic Fever Virus. PLoS ONE, 2014, 9, e100301.	1.1	20
96	Host mTORC1 Signaling Regulates Andes Virus Replication. Journal of Virology, 2013, 87, 912-922.	1.5	46
97	The role of endothelial activation in dengue hemorrhagic fever and hantavirus pulmonary syndrome. Virulence, 2013, 4, 525-536.	1.8	34
98	Rift Valley Fever Virus Clearance and Protection from Neurologic Disease Are Dependent on CD4 ⁺ T Cell and Virus-Specific Antibody Responses. Journal of Virology, 2013, 87, 6161-6171.	1.5	46
99	Reverse Genetics Recovery of Lujo Virus and Role of Virus RNA Secondary Structures in Efficient Virus Growth. Journal of Virology, 2012, 86, 10759-10765.	1.5	36
100	Severe Hemorrhagic Fever in Strain 13/N Guinea Pigs Infected with Lujo Virus. PLoS Neglected Tropical Diseases, 2012, 6, e1801.	1.3	19
101	Distinct and Overlapping Roles of Nipah Virus P Gene Products in Modulating the Human Endothelial Cell Antiviral Response. PLoS ONE, 2012, 7, e47790.	1.1	47
102	Hantavirus pulmonary syndrome. Virus Research, 2011, 162, 138-147.	1.1	155
103	Rift Valley Fever Virus Vaccine Lacking the NSs and NSm Genes Is Safe, Nonteratogenic, and Confers Protection from Viremia, Pyrexia, and Abortion following Challenge in Adult and Pregnant Sheep. Journal of Virology, 2011, 85, 12901-12909.	1.5	106
104	Andes Virus Disrupts the Endothelial Cell Barrier by Induction of Vascular Endothelial Growth Factor and Downregulation of VE-Cadherin. Journal of Virology, 2010, 84, 11227-11234.	1.5	87
105	Host-Species Transferrin Receptor 1 Orthologs Are Cellular Receptors for Nonpathogenic New World Clade B Arenaviruses. PLoS Pathogens, 2009, 5, e1000358.	2.1	96
106	Unique Small Molecule Entry Inhibitors of Hemorrhagic Fever Arenaviruses. Journal of Biological Chemistry, 2008, 283, 18734-18742.	1.6	86
107	Site 1 Protease Is Required for Proteolytic Processing of the Glycoproteins of the South American Hemorrhagic Fever Viruses Junin, Machupo, and Guanarito. Journal of Virology, 2008, 82, 6045-6051.	1.5	76
108	Receptor determinants of zoonotic transmission of New World hemorrhagic fever arenaviruses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2664-2669.	3.3	112

#	Article	IF	CITATIONS
109	Andes and Prospect Hill Hantaviruses Differ in Early Induction of Interferon although Both Can Downregulate Interferon Signaling. Journal of Virology, 2007, 81, 2769-2776.	1.5	84
110	Old World and Clade C New World Arenaviruses Mimic the Molecular Mechanism of Receptor Recognition Used by α-Dystroglycan's Host-Derived Ligands. Journal of Virology, 2007, 81, 5685-5695.	1.5	66
111	Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature, 2007, 446, 92-96.	13.7	374
112	Characterization of the Interaction of Lassa Fever Virus with Its Cellular Receptor α-Dystroglycan. Journal of Virology, 2005, 79, 5979-5987.	1.5	102
113	Posttranslational Modification of α-Dystroglycan, the Cellular Receptor for Arenaviruses, by the Glycosyltransferase LARGE Is Critical for Virus Binding. Journal of Virology, 2005, 79, 14282-14296.	1.5	137
114	Rapid Diagnosis of Ebola Hemorrhagic Fever by Reverse Transcription-PCR in an Outbreak Setting and Assessment of Patient Viral Load as a Predictor of Outcome. Journal of Virology, 2004, 78, 4330-4341.	1.5	457
115	New World Arenavirus Clade C, but Not Clade A and B Viruses, Utilizes α-Dystroglycan as Its Major Receptor. Journal of Virology, 2002, 76, 5140-5146.	1.5	172
116	Hantavirus Infection Induces the Expression of RANTES and IP-10 without Causing Increased Permeability in Human Lung Microvascular Endothelial Cells. Journal of Virology, 2001, 75, 6070-6085.	1.5	130
117	Tracing Dobrava Hantavirus Infection. Journal of Infectious Diseases, 2000, 181, 2116-2117.	1.9	5
118	Fatal illness associated with a new hantavirus in Louisiana. Journal of Medical Virology, 1995, 46, 281-286.	2.5	84
119	Identification of a New North American Hantavirus that Causes Acute Pulmonary Insufficiency. American Journal of Tropical Medicine and Hygiene, 1995, 52, 117-123.	0.6	161
120	Utilization of autopsy RNA for the synthesis of the nucleocapsid antigen of a newly recognized virus associated with hantavirus pulmonary syndrome. Virus Research, 1993, 30, 351-367.	1.1	194
121	Interferon Induction by Viruses. XXII. Vesicular Stomatitis Virus-Indiana: M-Protein and Leader RNA Do Not Regulate Interferon Induction in Chicken Embryo Cells. Journal of Interferon Research, 1993, 13, 413-418.	1.2	16