Ethan Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1631624/publications.pdf

Version: 2024-02-01

46 papers

3,385 citations

257450 24 h-index 243625 44 g-index

48 all docs

48 docs citations

48 times ranked

5000 citing authors

#	Article	IF	CITATIONS
1	DDR1 contributes to kidney inflammation and fibrosis by promoting the phosphorylation of BCR and STAT3. JCI Insight, 2022, 7, .	5.0	24
2	Utilizing Three-Dimensional Culture Methods to Improve High-Throughput Drug Screening in Anaplastic Thyroid Carcinoma. Cancers, 2022, 14, 1855.	3.7	0
3	The Casein kinase $1\hat{l}\pm$ agonist pyrvinium attenuates Wnt-mediated CK1 $\hat{l}\pm$ degradation via interaction with the E3Âubiquitin ligase component Cereblon. Journal of Biological Chemistry, 2022, 298, 102227.	3.4	4
4	Induction of Wnt signaling antagonists and p21-activated kinase enhances cardiomyocyte proliferation during zebrafish heart regeneration. Journal of Molecular Cell Biology, 2021, 13, 41-58.	3.3	11
5	Obtaining patient-derived cancer organoid cultures via fine-needle aspiration. STAR Protocols, 2021, 2, 100220.	1.2	11
6	Immunofluorescent staining of cancer spheroids and fine-needle aspiration-derived organoids. STAR Protocols, 2021, 2, 100578.	1.2	4
7	The E3 ubiquitin ligase component, Cereblon, is an evolutionarily conserved regulator of Wnt signaling. Nature Communications, 2021, 12, 5263.	12.8	20
8	Discovering small molecules as Wnt inhibitors that promote heart regeneration and injury repair. Journal of Molecular Cell Biology, 2020, 12, 42-54.	3.3	35
9	Fine-Needle Aspiration-Based Patient-Derived Cancer Organoids. IScience, 2020, 23, 101408.	4.1	39
10	Nuclear Regulation of Wnt/β-Catenin Signaling: It's a Complex Situation. Genes, 2020, 11, 886.	2.4	69
11	Casein Kinase 1α as a Regulator of Wnt-Driven Cancer. International Journal of Molecular Sciences, 2020, 21, 5940.	4.1	14
12	High-throughput drug screening of fine-needle aspiration-derived cancer organoids. STAR Protocols, 2020, 1, 100212.	1.2	5
13	Single-Cell Analyses Confirm the Critical Role of LRP6 for Wnt Signaling in APC-Deficient Cells. Developmental Cell, 2019, 49, 827-828.	7.0	10
14	Blood vessel epicardial substance reduces LRP6 receptor and cytoplasmic \hat{l}^2 -catenin levels to modulate Wnt signaling and intestinal homeostasis. Carcinogenesis, 2019, 40, 1086-1098.	2.8	11
15	Developmental regulation of Wnt signaling by Nagk and the UDP-GlcNAc salvage pathway. Mechanisms of Development, 2019, 156, 20-31.	1.7	16
16	The CK1α Activator Pyrvinium Enhances the Catalytic Efficiency (<i>k</i> _{cat} / <i>K</i> _m) of CK1α. Biochemistry, 2019, 58, 5102-5106.	2.5	10
17	Phosphorylation of XIAP at threonine 180 controls its activity in Wnt signaling. Journal of Cell Science, 2018, 131, .	2.0	11
18	APC Inhibits Ligand-Independent Wnt Signaling by the Clathrin Endocytic Pathway. Developmental Cell, 2018, 44, 566-581.e8.	7.0	73

#	Article	IF	Citations
19	Characterization of a <i>cdc14</i> null allele in <i>Drosophila melanogaster</i> . Biology Open, 2018, 7, .	1.2	6
20	Differential abundance of CK1 \hat{l} ± provides selectivity for pharmacological CK1 \hat{l} ± activators to target WNT-dependent tumors. Science Signaling, 2017, 10, .	3.6	31
21	IncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling. Nature Medicine, 2017, 23, 1331-1341.	30.7	352
22	The MAPK Pathway Regulates Intrinsic Resistance to BET Inhibitors in Colorectal Cancer. Clinical Cancer Research, 2017, 23, 2027-2037.	7.0	59
23	The Small Molecule IMR-1 Inhibits the Notch Transcriptional Activation Complex to Suppress Tumorigenesis. Cancer Research, 2016, 76, 3593-3603.	0.9	60
24	Reconstitution of the Cytoplasmic Regulation of the Wnt Signaling Pathway Using Xenopus Egg Extracts. Methods in Molecular Biology, 2016, 1481, 101-109.	0.9	3
25	Wnt pathway activation by ADP-ribosylation. Nature Communications, 2016, 7, 11430.	12.8	61
26	Identification of a Paralog-Specific Notch1 Intracellular Domain Degron. Cell Reports, 2016, 15, 1920-1929.	6.4	8
27	Wnt/Wingless Pathway Activation Is Promoted by a Critical Threshold of Axin Maintained by the Tumor Suppressor APC and the ADP-Ribose Polymerase Tankyrase. Genetics, 2016, 203, 269-281.	2.9	31
28	Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling. ELife, $2016, 5, .$	6.0	49
29	GLI3 Links Environmental Arsenic Exposure and Human Fetal Growth. EBioMedicine, 2015, 2, 536-543.	6.1	15
30	Inhibition of Wnt/ \hat{l}^2 â \in catenin pathway promotes regenerative repair of cutaneous and cartilage injury. FASEB Journal, 2015, 29, 4881-4892.	0.5	44
31	Repurposing the FDA-Approved Pinworm Drug Pyrvinium as a Novel Chemotherapeutic Agent for Intestinal Polyposis. PLoS ONE, 2014, 9, e101969.	2.5	53
32	The <i>Drosophila</i> MCPH1-B isoform is a substrate of the APCCdh1 E3 ubiquitin ligase complex. Biology Open, 2014, 3, 669-676.	1.2	10
33	Pyrvinium Attenuates Hedgehog Signaling Downstream of Smoothened. Cancer Research, 2014, 74, 4811-4821.	0.9	65
34	asunder is required for dynein localization and dorsal fate determination during Drosophila oogenesis. Developmental Biology, 2014, 386, 42-52.	2.0	5
35	Reconstitution Of β-catenin Degradation In Xenopus Egg Extract. Journal of Visualized Experiments, 2014, , .	0.3	4
36	The way Wnt works: Components and mechanism. Growth Factors, 2013, 31, 1-31.	1.7	197

#	Article	IF	Citations
37	Targeting the Wnt Pathway in Synovial Sarcoma Models. Cancer Discovery, 2013, 3, 1286-1301.	9.4	62
38	The Antihelmintic Drug Pyrvinium Pamoate Targets Aggressive Breast Cancer. PLoS ONE, 2013, 8, e71508.	2.5	46
39	XIAP Monoubiquitylates Groucho/TLE to Promote Canonical Wnt Signaling. Molecular Cell, 2012, 45, 619-628.	9.7	72
40	Small-molecule inhibition of Wnt signaling through activation of casein kinase $1\hat{l}_{\pm}$. Nature Chemical Biology, 2010, 6, 829-836.	8.0	425
41	Pyrvinium, a Potent Small Molecule Wnt Inhibitor, Promotes Wound Repair and Post-MI Cardiac Remodeling. PLoS ONE, 2010, 5, e15521.	2.5	135
42	LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of \hat{l}^2 -catenin. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8032-8037.	7.1	186
43	The Wnt Inhibitor sFRP2 Enhances Mesenchymal Stem Cell Engraftment, Granulation Tissue Formation and Myocardial Repair. Blood, 2008, 112, 1365-1365.	1.4	O
44	The Roles of APC and Axin Derived from Experimental and Theoretical Analysis of the Wnt Pathway. PLoS Biology, 2003, 1, e10.	5.6	556
45	Physiological regulation of β-catenin stability by Tcf3 and CK1ϵ. Journal of Cell Biology, 2001, 154, 983-994.	5.2	142
46	Control of β-Catenin Stability. Molecular Cell, 2000, 5, 523-532.	9.7	339