Kai-Michael Toellner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1631165/publications.pdf

Version: 2024-02-01

85 papers

7,867 citations

41 h-index 81 g-index

125 all docs

125
docs citations

times ranked

125

10112 citing authors

#	Article	IF	CITATIONS
1	Germinal center derived B cell memory without T cells. Journal of Experimental Medicine, 2022, 219, .	8.5	O
2	Recycling of memory B cells between germinal center and lymph node subcapsular sinus supports affinity maturation to antigenic drift. Nature Communications, 2022, 13, 2460.	12.8	16
3	Enhanced BCR signaling inflicts early plasmablast and germinal center B cell death. IScience, 2021, 24, 102038.	4.1	16
4	Nr4a1 and Nr4a3 Reporter Mice Are Differentially Sensitive to T Cell Receptor Signal Strength and Duration. Cell Reports, 2020, 33, 108328.	6.4	50
5	Class-Switch Recombination Occurs Infrequently in Germinal Centers. Immunity, 2019, 51, 337-350.e7.	14.3	329
6	Pre-conception maternal helminth infection transfers via nursing long-lasting cellular immunity against helminths to offspring. Science Advances, 2019, 5, eaav3058.	10.3	29
7	lgG Responses to Porins and Lipopolysaccharide within an Outer Membrane-Based Vaccine against Nontyphoidal <i>Salmonella</i> Develop at Discordant Rates. MBio, 2018, 9, .	4.1	31
8	Plasma cell output from germinal centers is regulated by signals from Tfh and stromal cells. Journal of Experimental Medicine, 2018, 215, 1227-1243.	8.5	113
9	What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028795.	5.5	16
10	Role of B-cell receptors for B-cell development and antigen-induced differentiation. F1000Research, 2018, 7, 429.	1.6	50
11	TFR cells trump autoimmune antibody responses to limit sedition. Nature Immunology, 2017, 18, 1185-1186.	14.5	1
12	lgG1 Is Required for Optimal Protection after Immunization with the Purified Porin OmpD from <i>Salmonella</i> Typhimurium. Journal of Immunology, 2017, 199, 4103-4109.	0.8	20
13	Antagonizing Retinoic Acid Receptors Increases Myeloid Cell Production by Cultured Human Hematopoietic Stem Cells. Archivum Immunologiae Et Therapiae Experimentalis, 2017, 65, 69-81.	2.3	17
14	Selective Expression of Flt3 within the Mouse Hematopoietic Stem Cell Compartment. International Journal of Molecular Sciences, 2017, 18, 1037.	4.1	41
15	Detecting Gene Expression in Lymphoid Microenvironments by Laser Microdissection and Quantitative RT-PCR. Methods in Molecular Biology, 2017, 1623, 21-36.	0.9	2
16	Extrafollicular Antibody Responses. , 2016, , 208-215.		2
17	Morning vaccination enhances antibody response over afternoon vaccination: A cluster-randomised trial. Vaccine, 2016, 34, 2679-2685.	3.8	209
18	Regulation of germinal center Bâ€cell differentiation. Immunological Reviews, 2016, 270, 8-19.	6.0	139

#	Article	IF	CITATIONS
19	Soluble flagellin coimmunization attenuates Th1 priming to Salmonella and clearance by modulating dendritic cell activation and cytokine production. European Journal of Immunology, 2015, 45, 2299-2311.	2.9	25
20	FOXP1 inhibits plasma cell differentiation. Blood, 2015, 126, 2076-2077.	1.4	5
21	IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11024-11029.	7.1	173
22	Robo4 vaccines induce antibodies that retard tumor growth. Angiogenesis, 2015, 18, 83-95.	7.2	15
23	Inflammation-induced formation of fat-associated lymphoid clusters. Nature Immunology, 2015, 16, 819-828.	14.5	175
24	Versatility of stem and progenitor cells and the instructive actions of cytokines on hematopoiesis. Critical Reviews in Clinical Laboratory Sciences, 2015, 52, 168-79.	6.1	40
25	Cognate interactions: Extrafollicular ILâ€4 drives germinalâ€center reactions, a new role for an old cytokine. European Journal of Immunology, 2014, 44, 1917-1920.	2.9	13
26	Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. Journal of Clinical Investigation, 2014, 124, 1869-1869.	8.2	1
27	Germinal center B cells govern their own fate via antibody feedback. Journal of Experimental Medicine, 2013, 210, 457-464.	8.5	231
28	Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. Journal of Clinical Investigation, 2013, 123, 5009-5022.	8.2	215
29	Dose-Dependent Induction of Murine Th1/Th2 Responses to Sheep Red Blood Cells Occurs in Two Steps: Antigen Presentation during Second Encounter Is Decisive. PLoS ONE, 2013, 8, e67746.	2.5	31
30	CD8 T cells induce T-bet–dependent migration toward CXCR3 ligands by differentiated B cells produced during responses to alum-protein vaccines. Blood, 2012, 120, 4552-4559.	1.4	39
31	The Capsular Polysaccharide Vi from <i>Salmonella</i> Typhi Is a B1b Antigen. Journal of Immunology, 2012, 189, 5527-5532.	0.8	47
32	A Theory of Germinal Center B Cell Selection, Division, and Exit. Cell Reports, 2012, 2, 162-174.	6.4	166
33	Helios Is Associated with CD4 T Cells Differentiating to T Helper 2 and Follicular Helper T Cells In Vivo Independently of Foxp3 Expression. PLoS ONE, 2011, 6, e20731.	2.5	67
34	Noxa mediates p18INK4c cell-cycle control of homeostasis in B cells and plasma cell precursors. Blood, 2011, 117, 2179-2188.	1.4	21
35	Trypanosoma cruzi infection induces a massive extrafollicular and follicular splenic B-cell response which is a high source of non-parasite-specific antibodies. Immunology, 2011, 132, 123-133.	4.4	77
36	Early B blasts acquire a capacity for Ig class switch recombination that is lost as they become plasmablasts. European Journal of Immunology, 2011, 41, 3506-3512.	2.9	45

3

#	Article	IF	CITATIONS
37	Cytokine mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis. Annals of the Rheumatic Diseases, 2011, 70, 2022-2028.	0.9	143
38	Cytokine mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis. Annals of the Rheumatic Diseases, 2011, 70, A60-A60.	0.9	1
39	SLC6A4 expression and anti-proliferative responses to serotonin transporter ligands chlomipramine and fluoxetine in primary B-cell malignancies. Leukemia Research, 2010, 34, 1103-1106.	0.8	14
40	Toll-like Receptor 4 Signaling by Follicular Dendritic Cells Is Pivotal for Germinal Center Onset and Affinity Maturation. Immunity, 2010, 33, 84-95.	14.3	96
41	IL-21 regulates germinal center B cell differentiation and proliferation through a B cell–intrinsic mechanism. Journal of Experimental Medicine, 2010, 207, 365-378.	8.5	661
42	B1 Cells Promote Pancreas Infiltration by Autoreactive T Cells. Journal of Immunology, 2010, 185, 2800-2807.	0.8	35
43	IFN-γ produced by CD8 T cells induces T-bet–dependent and –independent class switching in B cells in responses to alum-precipitated protein vaccine. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17292-17297.	7.1	63
44	Early simultaneous production of intranodal CD4 Th2 effectors and recirculating rapidly responding centralâ€memoryâ€like CD4 T cells. European Journal of Immunology, 2009, 39, 1573-1586.	2.9	8
45	Germinal centres seen through the mathematical eye: B-cell models on the catwalk. Trends in Immunology, 2009, 30, 157-164.	6.8	44
46	Axon growth and guidance genes identify Tâ€dependent germinal centre B cells. Immunology and Cell Biology, 2008, 86, 3-14.	2.3	50
47	Heterogeneity of lymphoid tissue inducer cell populations present in embryonic and adult mouse lymphoid tissues. Immunology, 2008, 124, 166-174.	4.4	51
48	Molecular differences between the divergent responses of ovalbumin-specific CD4 T cells to alum-precipitated ovalbumin compared to ovalbumin expressed by Salmonella. Molecular Immunology, 2008, 45, 3558-3566.	2.2	39
49	Deriving a germinal center lymphocyte migration model from two-photon data. Journal of Experimental Medicine, 2008, 205, 3019-3029.	8.5	87
50	Deriving a germinal center lymphocyte migration model from two-photon data. Journal of Cell Biology, 2008, 183, i14-i14.	5.2	0
51	<i>Salmonella</i> Induces a Switched Antibody Response without Germinal Centers That Impedes the Extracellular Spread of Infection. Journal of Immunology, 2007, 178, 6200-6207.	0.8	173
52	microRNA-155 Regulates the Generation of Immunoglobulin Class-Switched Plasma Cells. Immunity, 2007, 27, 847-859.	14.3	724
53	Recirculating CD4 memory T cells mount rapid secondary responses without major contributions from follicular CD4 effectors and B cells. European Journal of Immunology, 2007, 37, 1476-1484.	2.9	6
54	Type I cytokine profiles of human naive and memory B lymphocytes: a potential for memory cells to impact polarization. Immunology, 2006, 118, 66-77.	4.4	31

#	Article	IF	CITATIONS
55	Neonatal and Adult CD4+CD3â^ Cells Share Similar Gene Expression Profile, and Neonatal Cells Up-Regulate OX40 Ligand in Response to TL1A (TNFSF15). Journal of Immunology, 2006, 177, 3074-3081.	0.8	81
56	B cell clones that sustain long-term plasmablast growth in T-independent extrafollicular antibody responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5905-5910.	7.1	155
57	Analysis of the Germinal Center Reaction and In Vivo Long-Lived Plasma Cells. , 2004, 271, 111-125.		1
58	Loss of CD154 impairs the Th2 extrafollicular plasma cell response but not early T cell proliferation and interleukin-4 induction. Immunology, 2004, 113, 187-193.	4.4	28
59	Pinpointing IL-4-independent acquisition and IL-4-influenced maintenance of Th2 activity by CD4 T cells. European Journal of Immunology, 2004, 34, 686-694.	2.9	63
60	Responses to the soluble flagellar protein FliC are Th2, while those to FliC onSalmonella are Th1. European Journal of Immunology, 2004, 34, 2986-2995.	2.9	118
61	A non-voltage-gated calcium channel with L-type characteristics activated by B cell receptor ligation. Biochemical Pharmacology, 2003, 66, 2001-2009.	4.4	34
62	Recirculating and germinal center B cells differentiate into cells responsive to polysaccharide antigens. European Journal of Immunology, 2003, 33, 297-305.	2.9	56
63	Extrafollicular antibody responses. Immunological Reviews, 2003, 194, 8-18.	6.0	525
64	Naive and memory $B\hat{a}\in$, cells respond differentially to T-dependent signaling but display an equal potential for differentiation toward the centroblast-restricted CD77/globotriaosylceramide phenotype. European Journal of Immunology, 2003, 33, 1889-1898.	2.9	17
65	Rapid Development of Th2 Activity During T Cell Priming. Clinical and Developmental Immunology, 2003, 10, 1-6.	3.3	3
66	Established T Cell-Driven Germinal Center B Cell Proliferation Is Independent of CD28 Signaling but Is Tightly Regulated Through CTLA-4. Journal of Immunology, 2003, 170, 91-98.	0.8	45
67	Th2 Activities Induced During Virgin T Cell Priming in the Absence of IL-4, IL-13, and B Cells. Journal of Immunology, 2002, 169, 2900-2906.	0.8	41
68	Low-level Hypermutation in T Cell–independent Germinal Centers Compared with High Mutation Rates Associated with T Cell–dependent Germinal Centers. Journal of Experimental Medicine, 2002, 195, 383-389.	8.5	162
69	HL60 Cells Halted in G1 or S Phase Differentiate Normally. Experimental Cell Research, 2002, 281, 28-38.	2.6	30
70	CDK Inhibitor p18INK4c Is Required for the Generation of Functional Plasma Cells. Immunity, 2002, 17, 179-189.	14.3	97
71	Changing responsiveness to chemokines allows medullary plasmablasts to leave lymph nodes. European Journal of Immunology, 2001, 31, 609-616.	2.9	107
72	Tracking the response of Xid B cells in vivo: TI-2 antigen induces migration and proliferation but Btk is essential for terminal differentiation. European Journal of Immunology, 2001, 31, 1340-1350.	2.9	40

#	Article	IF	CITATIONS
73	Intrinsic Constraint on Plasmablast Growth and Extrinsic Limits of Plasma Cell Survival. Journal of Experimental Medicine, 2000, 192, 813-822.	8.5	268
74	Interplays between mouse mammary tumor virus and the cellular and humoral immune response. Immunological Reviews, 1999, 168, 287-303.	6.0	42
75	Defective immunoglobulin class switching in Vav-deficient mice is attributable to compromised T cell help. European Journal of Immunology, 1999, 29, 477-487.	2.9	48
76	T-independent type 2 antigens induce B cell proliferation in multiple splenic sites, but exponential growth is confined to extrafollicular foci. European Journal of Immunology, 1999, 29, 1314-1323.	2.9	111
77	T-independent type 2 antigens induce B cell proliferation in multiple splenic sites, but exponential growth is confined to extrafollicular foci. European Journal of Immunology, 1999, 29, 1314-1323.	2.9	2
78	CD4 T Cell Cytokine Differentiation: The B Cell Activation Molecule, OX40 Ligand, Instructs CD4 T Cells to Express Interleukin 4 and Upregulates Expression of the Chemokine Receptor, Blr-1. Journal of Experimental Medicine, 1998, 188, 297-304.	8.5	326
79	T Helper 1 (Th1) and Th2 Characteristics Start to Develop During T Cell Priming and Are Associated with an Immediate Ability to Induce Immunoglobulin Class Switching. Journal of Experimental Medicine, 1998, 187, 1193-1204.	8.5	209
80	Memory B-cell clones and the diversity of their members. Seminars in Immunology, 1997, 9, 229-234.	5.6	26
81	The changing preference of T and B cells for partners as T-dependent antibody responses develop. Immunological Reviews, 1997, 156, 53-66.	6.0	264
82	PROPERTIES OF MULTINUCLEATED GIANT CELLS IN A NEWIN VITRO MODEL FOR HUMAN GRANULOMA FORMATION. Journal of Pathology, 1997, 182, 99-105.	4.5	20
83	The use of reverse transcription polymerase chain reaction to analyse large numbers of mRNA species from a single cell. Journal of Immunological Methods, 1996, 191, 71-75.	1.4	20
84	Immunoglobulin switch transcript production in vivo related to the site and time of antigen-specific B cell activation Journal of Experimental Medicine, 1996, 183, 2303-2312.	8.5	178
85	The human germinal centre cells, follicular dendritic cells and germinal centre T cells produce B cell-stimulating cytokines. Cytokine, 1995, 7, 344-354.	3.2	46