Yanbiao Liu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1631027/yanbiao-liu-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 40 142 4,359 h-index g-index citations papers 5.98 146 5,593 9.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
142	Recent advances on the treatment of domestic wastewater by biological aerated filter 2022 , 155-170		
141	Biochemical characterization of a novel azo reductase named BVU5 from the bacterial flora DDMZ1: application for decolorization of azo dyes <i>RSC Advances</i> , 2022 , 12, 1968-1981	3.7	1
140	Motivation of reactive oxygen and nitrogen species by a novel non-thermal plasma coupled with calcium peroxide system for synergistic removal of sulfamethoxazole in waste activated sludge Water Research, 2022, 212, 118128	12.5	2
139	Photocatalytic degradation of tetracycline by using a regenerable (Bi)BiOBr/rGO composite. Journal of Cleaner Production, 2022, 339, 130771	10.3	4
138	Quantitative structure-activity relationship study on the degradation of polyhalogenated carbazoles by sulfidated zero-valent iron/peroxymonosulfate system. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107244	6.8	O
137	Singlet oxygen mediated photocatalytic Antimonite decontamination in water using nanoconfined TiO2. <i>Chemical Engineering Journal</i> , 2022 , 435, 134832	14.7	1
136	Atomic H* enhanced electrochemical recovery towards high-value-added metallic Sb from complex mine flotation wastewater. <i>Resources, Conservation and Recycling</i> , 2022 , 178, 106020	11.9	2
135	Boosting the efficiency of Fe-MoS2/peroxymonosulfate catalytic systems for organic pollutants remediation: Insights into edge-site atomic coordination. <i>Chemical Engineering Journal</i> , 2022 , 433, 1345	1 ¹ 4·7	2
134	Recent advances in antimony removal using carbon-based nanomaterials: A review. <i>Frontiers of Environmental Science and Engineering</i> , 2022 , 16, 1	5.8	4
133	Revisiting the adsorption of antimony on manganese dioxide: The overlooked dissolution of manganese. <i>Chemical Engineering Journal</i> , 2022 , 429, 132468	14.7	3
132	Transformation of polyvinyl chloride (PVC) into a versatile and efficient adsorbent of Cu(II) cations and Cr(VI) anions through hydrothermal treatment and sulfonation. <i>Journal of Hazardous Materials</i> , 2022 , 423, 126973	12.8	4
131	Peroxymonosulfate activation by FeO-MnO/CNT nanohybrid electroactive filter towards ultrafast micropollutants decontamination: Performance and mechanism. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127111	12.8	11
130	Metal-Coordinated Nanofiltration Membranes Constructed on Metal Ions Blended Support toward Enhanced Dye/Salt Separation and Antifouling Performances <i>Membranes</i> , 2022 , 12,	3.8	1
129	Peroxymonosulfate Activation by Photoelectroactive Nanohybrid Filter towards Effective Micropollutant Decontamination. <i>Catalysts</i> , 2022 , 12, 416	4	
128	Effect of cations on surfactant induced membrane wetting during membrane distillation. <i>Desalination</i> , 2022 , 532, 115739	10.3	O
127	Ultrafast degradation of micropollutants in water via electro-periodate activation catalyzed by nanoconfined Fe2O3. <i>Applied Catalysis B: Environmental</i> , 2022 , 309, 121289	21.8	2
126	Carbon Nanotubes Functionalized with Calcium Carbonate for Flow-Through Sequential Electrochemical Phosphate Recovery. <i>ACS ES&T Water</i> , 2022 , 2, 206-215		3

125	Electrified carbon nanotube membrane technology for water treatment 2022, 111-140		O
124	Selective formation of reactive oxygen species in peroxymonosulfate activation by metal-organic framework-derived membranes: A defect engineering-dependent study. <i>Applied Catalysis B: Environmental</i> , 2022 , 312, 121419	21.8	1
123	Interception of volatile organic compounds through CNT electrochemistry of electrified membrane surface during membrane distillation. <i>Separation and Purification Technology</i> , 2022 , 121380	8.3	0
122	Decontamination of Aqueous Heavy Metal Ions by Valence Regulation Strategy 2021 , 453-465		
121	An electroactive single-atom copper anchored MXene nanohybrid filter for ultrafast water decontamination. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 25964-25973	13	6
120	Metals pollution from textile production wastewater in Chinese southeastern coastal area: occurrence, source identification, and associated risk assessment. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 38689-38697	5.1	2
119	A novel electrocatalytic filtration system with carbon nanotube supported nanoscale zerovalent copper toward ultrafast oxidation of organic pollutants. <i>Water Research</i> , 2021 , 194, 116961	12.5	31
118	Redox-Active Nanohybrid Filter for Selective Recovery of Gold from Water. <i>ACS ES&T Engineering</i> , 2021 , 1, 1342-1350		1
117	Engineering carbon nanocatalysts towards efficient degradation of emerging organic contaminants via persulfate activation: A review. <i>Chinese Chemical Letters</i> , 2021 , 33, 1-1	8.1	13
116	Highly-active, metal-free, carbon-based ORR cathode for efficient organics removal and electricity generation in a PFC system. <i>Chinese Chemical Letters</i> , 2021 , 32, 2212-2216	8.1	18
115	Simultaneous decontamination of arsenite and antimonite using an electrochemical CNT filter functionalized with nanoscale goethite. <i>Chemosphere</i> , 2021 , 274, 129790	8.4	7
114	Inhibitory effect of released phosphate on the ability of nano zero valent iron to boost anaerobic digestion of waste-activated sludge and the remediation method. <i>Chemical Engineering Journal</i> , 2021 , 405, 126506	14.7	9
113	Evolution of microbial populations and impacts of microbial activity in the anaerobic-oxic-settling-anaerobic process for simultaneous sludge reduction and dyeing wastewater treatment. <i>Journal of Cleaner Production</i> , 2021 , 282, 124403	10.3	7
112	Sea urchin-like FeOOH functionalized electrochemical CNT filter for one-step arsenite decontamination. <i>Journal of Hazardous Materials</i> , 2021 , 407, 124384	12.8	9
111	From the accelerated production of D H radicals to the crosslinking of polyvinyl alcohol: The role of free radicals initiated by persulfates. <i>Applied Catalysis B: Environmental</i> , 2021 , 285, 119763	21.8	3
111		21.8	3
	free radicals initiated by persulfates. <i>Applied Catalysis B: Environmental</i> , 2021 , 285, 119763 A novel UiO-66/PSF-composite membrane for the rejection of multiple antibiotics: Numerical		

107	Extremely efficient electro-Fenton-like Sb(III) detoxification using nanoscale Ti-Ce binary oxide: An effective design to boost catalytic activity via non-radical pathway. <i>Chinese Chemical Letters</i> , 2021 , 32, 2519-2523	8.1	7
106	Defect-Rich Hierarchical Porous UiO-66(Zr) for Tunable Phosphate Removal. <i>Environmental Science & Environmental Science</i>	10.3	5
105	Construction of Loose Positively Charged NF Membrane by Layer-by-Layer Grafting of Polyphenol and Polyethyleneimine on the PES/Fe Substrate for Dye/Salt Separation. <i>Membranes</i> , 2021 , 11,	3.8	2
104	A critical review of the aniline transformation fate in azo dye wastewater treatment. <i>Journal of Cleaner Production</i> , 2021 , 321, 128971	10.3	12
103	Robust dual-layer Janus membranes with the incorporation of polyphenol/Fe3+ complex for enhanced anti-oil fouling performance in membrane distillation. <i>Desalination</i> , 2021 , 515, 115184	10.3	9
102	Selective adsorption and fluorescence sensing of tetracycline by Zn-mediated chitosan non-woven fabric. <i>Journal of Colloid and Interface Science</i> , 2021 , 603, 418-429	9.3	3
101	Development of Atomic Hydrogen-Mediated Electrocatalytic Filtration System for Peroxymonosulfate Activation Towards Ultrafast Degradation of Emerging Organic Contaminants. <i>Applied Catalysis B: Environmental</i> , 2021 , 298, 120593	21.8	9
100	Why does sludge-based hydochar activate peroxydisulfate to remove atrazine more efficiently than pyrochar?. <i>Applied Catalysis B: Environmental</i> , 2021 , 299, 120663	21.8	3
99	Simultaneous removal of antimony, chromium and aniline by forward osmosis membrane: Preparation, performance and mechanism. <i>Desalination</i> , 2021 , 520, 115363	10.3	5
98	Carbon nanotube filter functionalized with MIL-101(Fe) for enhanced flow-through electro-Fenton. <i>Environmental Research</i> , 2021 , 204, 112117	7.9	10
97	Prospects of an Electroactive Carbon Nanotube Membrane toward Environmental Applications. <i>Accounts of Chemical Research</i> , 2020 , 53, 2892-2902	24.3	62
96	An Affordable Carbon Nanotube Filter Functionalized with Nanoscale Zerovalent Iron for One-Step Sb(III) Decontamination. <i>Environmental Engineering Science</i> , 2020 , 37, 490-496	2	1
95	S-TiO/UiO-66-NH composite for boosted photocatalytic Cr(VI) reduction and bisphenol A degradation under LED visible light. <i>Journal of Hazardous Materials</i> , 2020 , 399, 123085	12.8	56
94	Functionalized electrospun nanofiber membranes for water treatment: A review. <i>Science of the Total Environment</i> , 2020 , 739, 139944	10.2	75
93	A ClO-mediated photoelectrochemical filtration system for highly-efficient and complete ammonia conversion. <i>Journal of Hazardous Materials</i> , 2020 , 400, 123246	12.8	16
92	Mitigation of Membrane Fouling Using an Electroactive Polyether Sulfone Membrane. <i>Membranes</i> , 2020 , 10,	3.8	7
91	Ultrasensitive detection of amoxicillin by TiO-g-CN@AuNPs impedimetric aptasensor: Fabrication, optimization, and mechanism. <i>Journal of Hazardous Materials</i> , 2020 , 391, 122024	12.8	33
90	Rapid and selective electrochemical transformation of ammonia to N by substoichiometric TiO-based electrochemical system <i>RSC Advances</i> , 2020 , 10, 1219-1225	3.7	5

(2020-2020)

89	The key factors and removal mechanisms of sulfadimethoxazole and oxytetracycline by coagulation. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 16167-16176	5.1	5
88	Application of advanced anodes in microbial fuel cells for power generation: A review. <i>Chemosphere</i> , 2020 , 248, 125985	8.4	82
87	Ultra-fast detoxification of Sb(III) using a flow-through TiO2-nanotubes-array-mesh based photoelectrochemical system. <i>Chemical Engineering Journal</i> , 2020 , 387, 124155	14.7	16
86	A Bifunctional Electroactive Ti4O7-Based Membrane System for Highly Efficient Ammonia Decontamination. <i>Catalysts</i> , 2020 , 10, 383	4	2
85	Deciphering the mechanism of carbon sources inhibiting recolorization in the removal of refractory dye: Based on an untargeted LC-MS metabolomics approach. <i>Bioresource Technology</i> , 2020 , 307, 123248	3 ¹¹	10
84	Recent advances on electroactive CNT-based membranes for environmental applications: The perfect match of electrochemistry and membrane separation. <i>Chinese Chemical Letters</i> , 2020 , 31, 2539-	2 ⁸ 48	44
83	Supported Atomically-Precise Gold Nanoclusters for Enhanced Flow-through Electro-Fenton. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	59
82	Role of Interspecies Electron Transfer for Boosting Methane Production by Anaerobic Digestion in Syntrophic Methanogenesis 2020 , 65-77		
81	Co-metabolic degradation of refractory dye: A metagenomic and metaproteomic study. <i>Environmental Pollution</i> , 2020 , 256, 113456	9.3	17
80	Stabilizing lactate production through repeated batch fermentation of food waste and waste activated sludge. <i>Bioresource Technology</i> , 2020 , 300, 122709	11	21
79	Ultra-rapid detoxification of Sb(III) using a flow-through electro-fenton system. <i>Chemosphere</i> , 2020 , 245, 125604	8.4	9
78	Direct contact membrane distillation of refining waste stream from precious metal recovery: Chemistry of silica and chromium (III) in membrane scaling. <i>Journal of Membrane Science</i> , 2020 , 598, 117	803	14
77	One-step phosphite removal by an electroactive CNT filter functionalized with TiO/CeO nanocomposites. <i>Science of the Total Environment</i> , 2020 , 710, 135514	10.2	6
76	Application of Fenton pre-oxidation, Ca-induced coagulation, and sludge reclamation for enhanced treatment of ultra-high concentration poly(vinyl alcohol) wastewater. <i>Journal of Hazardous Materials</i> , 2020 , 389, 121866	12.8	9
75	One-step Sb(III) decontamination using a bifunctional photoelectrochemical filter. <i>Journal of Hazardous Materials</i> , 2020 , 389, 121840	12.8	27
74	Rapid decontamination of tetracycline hydrolysis product using electrochemical CNT filter: Mechanism, impacting factors and pathways. <i>Chemosphere</i> , 2020 , 244, 125525	8.4	18
73	Simultaneous energy harvest and nitrogen removal using a supercapacitor microbial fuel cell. <i>Environmental Pollution</i> , 2020 , 266, 115154	9.3	10
72	Singlet Oxygen-Mediated Electrochemical Filter for Selective and Rapid Degradation of Organic Compounds. <i>Industrial & Degradation of Organic Research</i> , 2020 , 59, 14180-14187	3.9	5

71	Carbon nanotube filter functionalized with iron oxychloride for flow-through electro-Fenton. <i>Applied Catalysis B: Environmental</i> , 2020 , 260, 118204	21.8	59
70	Spherical Cu2O-Fe3O4@chitosan bifunctional catalyst for coupled Cr-organic complex oxidation and Cr(VI) capture-reduction. <i>Chemical Engineering Journal</i> , 2020 , 383, 123105	14.7	24
69	Role of GAC-MnO2 catalyst for triggering the extracellular electron transfer and boosting CH4 production in syntrophic methanogenesis. <i>Chemical Engineering Journal</i> , 2020 , 383, 123211	14.7	33
68	Boosting Cr(VI) detoxification and sequestration efficiency with carbon nanotube electrochemical filter functionalized with nanoscale polyaniline: Performance and mechanism. <i>Science of the Total Environment</i> , 2019 , 695, 133926	10.2	20
67	Durability and performance of loofah sponge as carrier for wastewater treatment with high ammonium. <i>Water Environment Research</i> , 2019 , 91, 581-587	2.8	6
66	Engineering Reusable Sponge of Cobalt Heterostructures for Highly Efficient Organic Pollutants Degradation via Peroxymonosulfate Activation. <i>ChemNanoMat</i> , 2019 , 5, 547-557	3.5	3
65	A novel method for textile odor removal using engineered water nanostructures <i>RSC Advances</i> , 2019 , 9, 17726-17736	3.7	10
64	A crosslinking-induced precipitation process for the simultaneous removal of poly(vinyl alcohol) and reactive dye: The importance of covalent bond forming and magnesium coagulation. <i>Chemical Engineering Journal</i> , 2019 , 374, 904-913	14.7	45
63	Simultaneous oxidation and sorption of highly toxic Sb(III) using a dual-functional electroactive filter. <i>Environmental Pollution</i> , 2019 , 251, 72-80	9.3	28
62	A chloride-radical-mediated electrochemical filtration system for rapid and effective transformation of ammonia to nitrogen. <i>Chemosphere</i> , 2019 , 229, 383-391	8.4	18
61	Recent advances on photocatalytic fuel cell for environmental applications-The marriage of photocatalysis and fuel cells. <i>Science of the Total Environment</i> , 2019 , 668, 966-978	10.2	95
60	Fructose as an additional co-metabolite promotes refractory dye degradation: Performance and mechanism. <i>Bioresource Technology</i> , 2019 , 280, 430-440	11	24
59	Removal of active dyes by ultrafiltration membrane pre-deposited with a PSFM coagulant: Performance and mechanism. <i>Chemosphere</i> , 2019 , 223, 204-210	8.4	14
58	Electroactive Filter Technology for Water Treatment 2019 , 43-55		
57	Nanoscale iron (oxyhydr)oxide-modified carbon nanotube filter for rapid and effective Sb(iii) removal <i>RSC Advances</i> , 2019 , 9, 18196-18204	3.7	12
56	Sugar sources as Co-substrates promoting the degradation of refractory dye: A comparative study. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 184, 109613	7	10
55	CFD simulations of fiber-fiber interaction in a hollow fiber membrane bundle: Fiber distance and position matters. <i>Separation and Purification Technology</i> , 2019 , 209, 707-713	8.3	16
54	Electroactive Modified Carbon Nanotube Filter for Simultaneous Detoxification and Sequestration of Sb(III). Environmental Science & amp; Technology, 2019, 53, 1527-1535	10.3	78

53	Performance and microbial protein expression during anaerobic treatment of alkali-decrement wastewater using a strengthened circulation anaerobic reactor. <i>Bioresource Technology</i> , 2019 , 273, 40-48 ¹	3
52	Treatment of Typical Organic Pollutants in Textile Wastewater by Direct Contact Membrane Distillation. <i>Environmental Processes</i> , 2018 , 5, 77-85	2
51	Conductive 3D sponges for affordable and highly-efficient water purification. <i>Nanoscale</i> , 2018 , 10, 4771-4778	3 46
50	Correlating microbial community structure with operational conditions in biological aerated filter reactor for efficient nitrogen removal of municipal wastewater. <i>Bioresource Technology</i> , 2018 , 250, 374-381	23
49	A software sensor model based on hybrid fuzzy neural network for rapid estimation water quality in Guangzhou section of Pearl River, China. <i>Journal of Environmental Science and Health - Part A</i> 2.3 <i>Toxic/Hazardous Substances and Environmental Engineering</i> , 2018 , 53, 91-98	4
48	Microbial uniqueness of architecture modified loofah sponge as biological filler for efficient nitrogen removal. <i>Bioresource Technology Reports</i> , 2018 , 3, 95-101	10
47	Tuning the adsorption behaviour of Estructure chitosan by metal binding. <i>Environmental Chemistry</i> , 2018 , 15, 267	3
46	Granulation process in an expanded granular sludge blanket (EGSB) reactor for domestic sewage treatment: Impact of extracellular polymeric substances compositions and evolution of microbial 11 population. <i>Bioresource Technology</i> , 2018 , 269, 153-161	35
45	Direct contact membrane distillation for the treatment of industrial dyeing wastewater and characteristic pollutants. <i>Separation and Purification Technology</i> , 2018 , 195, 83-91	108
44	Anaerobic biodegradation and decolorization of a refractory acid dye by a forward osmosis membrane bioreactor. <i>Environmental Science: Water Research and Technology</i> , 2018 , 4, 272-280	23
43	Cyclodextringold nanocluster decorated TiO2 enhances photocatalytic decomposition of organic pollutants. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 1102-1108	69
42	Rational Design of High-Performance Continuous-Flow Microreactors Based on Gold Nanoclusters and Graphene for Catalysis. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 15425-15433	17
41	Recent advances in anaerobic biological processes for textile printing and dyeing wastewater treatment: a mini-review. World Journal of Microbiology and Biotechnology, 2018 , 34, 165	59
40	Ligand-Free Nano-Au Catalysts on Nitrogen-Doped Graphene Filter for Continuous Flow Catalysis. Nanomaterials, 2018 , 8, 5-4	3
39	Treatment of industrial dyeing wastewater with a pilot-scale strengthened circulation anaerobic reactor. <i>Bioresource Technology</i> , 2018 , 264, 154-162	47
38	Golden Carbon Nanotube Membrane for Continuous Flow Catalysis. <i>Industrial & Description 3.9</i> 3.9	78
37	Development of electro-active forward osmosis membranes to remove phenolic compounds and reject salts. <i>Environmental Science: Water Research and Technology</i> , 2017 , 3, 139-146	17
36	Conductive Cotton Filters for Affordable and Efficient Water Purification. <i>Catalysts</i> , 2017 , 7, 291 4	6

35	Highly Luminescent Thiolated Gold Nanoclusters Impregnated in Nanogel. <i>Chemistry of Materials</i> , 2016 , 28, 4009-4016	9.6	173
34	Template-Assisted Fabrication of Thin-Film Composite Forward-Osmosis Membrane with Controllable Internal Concentration Polarization. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 5327-5334	3.9	28
33	Gold nanocluster sensitized TiO2 nanotube arrays for visible-light driven photoelectrocatalytic removal of antibiotic tetracycline. <i>Nanoscale</i> , 2016 , 8, 10145-51	7.7	80
32	Nitrogen-doped graphene nanosheets as reactive water purification membranes. <i>Nano Research</i> , 2016 , 9, 1983-1993	10	67
31	Emerging nanotechnology for environmental applications. <i>Nanotechnology Reviews</i> , 2016 , 5, 1-2	6.3	11
30	Degradation of the Common Aqueous Antibiotic Tetracycline using a Carbon Nanotube Electrochemical Filter. <i>Environmental Science & Electrochemical Filter</i> . <i>Environmental Science & Electrochemical Filter</i> .	10.3	144
29	Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H2O2. <i>Environmental Science: Water Research and Technology</i> , 2015 , 1, 769-778	4.2	63
28	Rapid adsorption removal of arsenate by hydrous cerium oxidegraphene composite. <i>RSC Advances</i> , 2015 , 5, 64983-64990	3.7	70
27	Engineering noble metal nanomaterials for environmental applications. <i>Nanoscale</i> , 2015 , 7, 7502-19	7.7	104
26	Quantitative 2D electrooxidative carbon nanotube filter model: Insight into reactive sites. <i>Carbon</i> , 2014 , 80, 651-664	10.4	21
25	A graphene-based electrochemical filter for water purification. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16554-16562	13	87
24	Photoeletrocatalytic activity of an n-ZnO/p-Cu2O/n-TNA ternary heterojunction electrode for tetracycline degradation. <i>Journal of Hazardous Materials</i> , 2013 , 262, 482-8	12.8	46
23	Preparation of well-aligned WO3 nanoflake arrays vertically grown on tungsten substrate as photoanode for photoelectrochemical water splitting. <i>Electrochemistry Communications</i> , 2012 , 20, 153-	156	45
22	The hazardous hexavalent chromium formed on trivalent chromium conversion coating: The origin, influence factors and control measures. <i>Journal of Hazardous Materials</i> , 2012 , 221-222, 56-61	12.8	14
21	Assessment of a COD analytical method based on the photoelectrocatalysis of a TiO2 nanotube array sensor. <i>Analytical Methods</i> , 2012 , 4, 1790	3.2	11
20	Photoelectrocatalytic degradation of refractory organic compounds enhanced by a photocatalytic fuel cell. <i>Applied Catalysis B: Environmental</i> , 2012 , 111-112, 485-491	21.8	102
19	Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell. <i>Water Research</i> , 2011 , 45, 3991-8	12.5	126
18	A TiO2-nanotube-array-based photocatalytic fuel cell using refractory organic compounds as substrates for electricity generation. <i>Chemical Communications</i> , 2011 , 47, 10314-6	5.8	144

LIST OF PUBLICATIONS

17	Highly stable CdS-modified short TiO2 nanotube array electrode for efficient visible-light hydrogen generation. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 167-174	6.7	106
16	Enhanced Photoelectrochemical Properties of Cu2O-loaded Short TiO2 Nanotube Array Electrode Prepared by Sonoelectrochemical Deposition. <i>Nano-Micro Letters</i> , 2010 , 2, 277-284	19.5	51
15	Photoelectrochemical degradation of methyl orange by TiO(2) nanopore arrays electrode and its comparison with TiO(2) nanotube arrays electrode. <i>Water Science and Technology</i> , 2010 , 62, 2783-9	2.2	1
14	A novel thin-layer photoelectrocatalytic (PEC) reactor with double-faced titania nanotube arrays electrode for effective degradation of tetracycline. <i>Applied Catalysis B: Environmental</i> , 2010 , 98, 154-160	021.8	50
13	A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production: CdS sensitized TiO2 nanotube arrays. <i>Applied Catalysis B: Environmental</i> , 2010 , 95, 408-413	21.8	115
12	Kinetics and Mechanisms for Photoelectrochemical Degradation of Glucose on Highly Effective Self-Organized TiO2 Nanotube Arrays. <i>Chinese Journal of Catalysis</i> , 2010 , 31, 163-170	11.3	10
11	Enhanced Photoelectrochemical Properties of Cu2O-loaded Short TiO2 Nanotube Array Electrode Prepared by Sonoelectrochemical Deposition 2010 , 2, 277		4
10	Kinetics and Mechanisms for Photoelectrochemical Degradation of Glucose on Highly Effective Self-Organized TiO2 Nanotube Arrays. <i>Chinese Journal of Catalysis</i> , 2010 , 31, 163-170	11.3	
9	Comparison of photoelectrochemical properties of TiO2-nanotube-array photoanode prepared by anodization in different electrolyte. <i>Environmental Chemistry Letters</i> , 2009 , 7, 363-368	13.3	38
8	Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode. <i>Journal of Hazardous Materials</i> , 2009 , 171, 678-83	12.8	126
7	Efficient photochemical water splitting and organic pollutant degradation by highly ordered TiO2 nanopore arrays. <i>Applied Catalysis B: Environmental</i> , 2009 , 89, 142-148	21.8	77
6	Preparation of short, robust and highly ordered TiO2 nanotube arrays and their applications as electrode. <i>Applied Catalysis B: Environmental</i> , 2009 , 92, 326-332	21.8	61
5	Photoelectrocatalytic COD determination method using highly ordered TiO(2) nanotube array. Water Research, 2009 , 43, 1986-92	12.5	74
4	The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte. <i>Journal of Materials Science</i> , 2008 , 43, 1880-1884	4.3	65
3	Self-Organized TiO2 Nanotube Array Sensor for the Determination of Chemical Oxygen Demand. <i>Advanced Materials</i> , 2008 , 20, 1044-1049	24	289
2	Light scattering of nanocrystalline TiO 2 film used in dye-sensitized solar cells. <i>Chinese Physics B</i> , 2008 , 17, 3713-3719	1.2	18
1	TiO2 nanotube arrays and TiO2-nanotube-array based dye-sensitized solar cell. <i>Science Bulletin</i> , 2007 , 52, 1585-1589		14