Trent R Northen

List of Publications by Citations

Source: https://exaly.com/author-pdf/1630993/trent-r-northen-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 172
 8,395
 42
 89

 papers
 citations
 h-index
 g-index

 193
 11,671
 8.9
 6.21

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
172	Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. <i>Nature Biotechnology</i> , 2016 , 34, 828-837	44.5	1566
171	Feed Your Friends: Do Plant Exudates Shape the Root Microbiome?. <i>Trends in Plant Science</i> , 2018 , 23, 25-41	13.1	655
170	Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. <i>Nature Microbiology</i> , 2018 , 3, 470-480	26.6	623
169	Clathrate nanostructures for mass spectrometry. <i>Nature</i> , 2007 , 449, 1033-6	50.4	426
168	Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. <i>Nature Communications</i> , 2015 , 6, 7618	17.4	194
167	Deciphering microbial interactions in synthetic human gut microbiome communities. <i>Molecular Systems Biology</i> , 2018 , 14, e8157	12.2	185
166	Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. <i>Analytical Chemistry</i> , 2008 , 80, 421-9	7.8	163
165	Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. <i>ISME Journal</i> , 2013 , 7, 2178-91	11.9	156
164	Dealing with the unknown: metabolomics and metabolite atlases. <i>Journal of the American Society for Mass Spectrometry</i> , 2010 , 21, 1471-6	3.5	135
163	A nanostructure-initiator mass spectrometry-based enzyme activity assay. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 3678-83	11.5	132
162	Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. <i>MBio</i> , 2015 , 6,	7.8	128
161	Calcifying cyanobacteriathe potential of biomineralization for carbon capture and storage. <i>Current Opinion in Biotechnology</i> , 2010 , 21, 365-71	11.4	124
160	Exometabolite niche partitioning among sympatric soil bacteria. <i>Nature Communications</i> , 2015 , 6, 8289	17.4	120
159	A genomic catalog of Earth® microbiomes. <i>Nature Biotechnology</i> , 2021 , 39, 499-509	44.5	120
158	Nanostructure-initiator mass spectrometry: a protocol for preparing and applying NIMS surfaces for high-sensitivity mass analysis. <i>Nature Protocols</i> , 2008 , 3, 1341-9	18.8	112
157	Nanostructure initiator mass spectrometry: tissue imaging and direct biofluid analysis. <i>Analytical Chemistry</i> , 2009 , 81, 2969-75	7.8	110
156	Bacteria increase arid-land soil surface temperature through the production of sunscreens. <i>Nature Communications</i> , 2016 , 7, 10373	17.4	107

(2019-2015)

155	Untargeted soil metabolomics methods for analysis of extractable organic matter. <i>Soil Biology and Biochemistry</i> , 2015 , 80, 189-198	7.5	87	
154	The lethal cargo of Myxococcus xanthus outer membrane vesicles. <i>Frontiers in Microbiology</i> , 2014 , 5, 474	5.7	86	
153	Linking soil biology and chemistry in biological soil crust using isolate exometabolomics. <i>Nature Communications</i> , 2018 , 9, 19	17.4	83	
152	Cyanobacteria as Biocatalysts for Carbonate Mineralization. <i>Minerals (Basel, Switzerland)</i> , 2012 , 2, 338-	3 6 44	83	
151	Learning representations of microbe-metabolite interactions. <i>Nature Methods</i> , 2019 , 16, 1306-1314	21.6	79	
150	Proteogenomic analyses indicate bacterial methylotrophy and archaeal heterotrophy are prevalent below the grass root zone. <i>PeerJ</i> , 2016 , 4, e2687	3.1	72	
149	Mediterranean grassland soil C-N compound turnover is dependent on rainfall and depth, and is mediated by genomically divergent microorganisms. <i>Nature Microbiology</i> , 2019 , 4, 1356-1367	26.6	70	
148	OpenMSI: a high-performance web-based platform for mass spectrometry imaging. <i>Analytical Chemistry</i> , 2013 , 85, 10354-61	7.8	68	
147	Cooking shapes the structure and function of the gut microbiome. <i>Nature Microbiology</i> , 2019 , 4, 2052-2	2 0<u>6</u>63 .6	66	
146	Untangling the sequence of events during the S - 15 transition in photosystem II and implications for the water oxidation mechanism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 12624-12635	11.5	65	
145	High surface area of porous silicon drives desorption of intact molecules. <i>Journal of the American Society for Mass Spectrometry</i> , 2007 , 18, 1945-9	3.5	64	
144	Metabolites associated with adaptation of microorganisms to an acidophilic, metal-rich environment identified by stable-isotope-enabled metabolomics. <i>MBio</i> , 2013 , 4, e00484-12	7.8	63	
143	Belowground Response to Drought in a Tropical Forest Soil. I. Changes in Microbial Functional Potential and Metabolism. <i>Frontiers in Microbiology</i> , 2016 , 7, 525	5.7	63	
142	Lineage-specific chromatin signatures reveal a regulator of lipid metabolism in microalgae. <i>Nature Plants</i> , 2015 , 1, 15107	11.5	60	
141	Metabolite identification in Synechococcus sp. PCC 7002 using untargeted stable isotope assisted metabolite profiling. <i>Analytical Chemistry</i> , 2010 , 82, 9034-42	7.8	59	
140	Mass spectrometry based metabolomics and enzymatic assays for functional genomics. <i>Current Opinion in Microbiology</i> , 2009 , 12, 547-52	7.9	57	
139	Probing the active fraction of soil microbiomes using BONCAT-FACS. <i>Nature Communications</i> , 2019 , 10, 2770	17.4	53	
138	Lessons from Two Design-Build-Test-Learn Cycles of Dodecanol Production in Escherichia coli Aided by Machine Learning. <i>ACS Synthetic Biology</i> , 2019 , 8, 1337-1351	5.7	53	

137	High-throughput platforms for metabolomics. Current Opinion in Chemical Biology, 2016, 30, 7-13	9.7	52
136	Mass spectrometry-based metabolomics, analysis of metabolite-protein interactions, and imaging. <i>BioTechniques</i> , 2010 , 49, 557-65	2.5	51
135	CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. <i>Nature Microbiology</i> , 2019 , 4, 2498-2510	26.6	48
134	Mass spectrometry imaging for in situ kinetic histochemistry. <i>Scientific Reports</i> , 2013 , 3, 1656	4.9	47
133	Phylogenomically guided identification of industrially relevant GH1 Eglucosidases through DNA synthesis and nanostructure-initiator mass spectrometry. <i>ACS Chemical Biology</i> , 2014 , 9, 2082-91	4.9	45
132	Functional genomics of novel secondary metabolites from diverse cyanobacteria using untargeted metabolomics. <i>Marine Drugs</i> , 2013 , 11, 3617-31	6	45
131	A robust gene-stacking method utilizing yeast assembly for plant synthetic biology. <i>Nature Communications</i> , 2016 , 7, 13215	17.4	42
130	High throughput screening of enzyme activity with mass spectrometry imaging. <i>Current Opinion in Biotechnology</i> , 2015 , 31, 1-9	11.4	41
129	Exometabolomics and MSI: deconstructing how cells interact to transform their small molecule environment. <i>Current Opinion in Biotechnology</i> , 2015 , 34, 209-16	11.4	40
128	Untargeted metabolic footprinting reveals a surprising breadth of metabolite uptake and release by Synechococcus sp. PCC 7002. <i>Molecular BioSystems</i> , 2011 , 7, 3200-6		40
127	EcoFABs: advancing microbiome science through standardized fabricated ecosystems. <i>Nature Methods</i> , 2019 , 16, 567-571	21.6	39
126	Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules. <i>Biotechnology for Biofuels</i> , 2015 , 8, 220	7.8	38
125	Isolation of a significant fraction of non-phototroph diversity from a desert Biological Soil Crust. <i>Frontiers in Microbiology</i> , 2015 , 6, 277	5.7	37
124	Impacts of Maize Domestication and Breeding on Rhizosphere Microbial Community Recruitment from a Nutrient Depleted Agricultural Soil. <i>Scientific Reports</i> , 2019 , 9, 15611	4.9	37
123	Belowground Response to Drought in a Tropical Forest Soil. II. Change in Microbial Function Impacts Carbon Composition. <i>Frontiers in Microbiology</i> , 2016 , 7, 323	5.7	37
122	"Replica-extraction-transfer" nanostructure-initiator mass spectrometry imaging of acoustically printed bacteria. <i>Analytical Chemistry</i> , 2013 , 85, 10856-62	7.8	36
121	Regulation of Oxygenic Photosynthesis during Trophic Transitions in the Green Alga. <i>Plant Cell</i> , 2019 , 31, 579-601	11.6	35
120	From soil to structure, a novel dimeric Eglucosidase belonging to glycoside hydrolase family 3 isolated from compost using metagenomic analysis. <i>Journal of Biological Chemistry</i> , 2013 , 288, 14985-9	2 ^{5.4}	35

(2013-2017)

119	On-chip integration of droplet microfluidics and nanostructure-initiator mass spectrometry for enzyme screening. <i>Lab on A Chip</i> , 2017 , 17, 323-331	7.2	33
118	Enzyme promiscuity shapes adaptation to novel growth substrates. <i>Molecular Systems Biology</i> , 2019 , 15, e8462	12.2	33
117	Resolving brain regions using nanostructure initiator mass spectrometry imaging of phospholipids. <i>Integrative Biology (United Kingdom)</i> , 2012 , 4, 693-9	3.7	32
116	Conserved features of cancer cells define their sensitivity to HAMLET-induced death; c-Myc and glycolysis. <i>Oncogene</i> , 2011 , 30, 4765-79	9.2	31
115	Rapid kinetic characterization of glycosyl hydrolases based on oxime derivatization and nanostructure-initiator mass spectrometry (NIMS). <i>ACS Chemical Biology</i> , 2014 , 9, 1470-9	4.9	30
114	Acoustic deposition with NIMS as a high-throughput enzyme activity assay. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 403, 707-11	4.4	30
113	Function-driven single-cell genomics uncovers cellulose-degrading bacteria from the rare biosphere. <i>ISME Journal</i> , 2020 , 14, 659-675	11.9	29
112	Competitive sorption of microbial metabolites on an iron oxide mineral. <i>Soil Biology and Biochemistry</i> , 2015 , 90, 34-41	7.5	28
111	Analysis of Metabolomics Datasets with High-Performance Computing and Metabolite Atlases. <i>Metabolites</i> , 2015 , 5, 431-42	5.6	28
110	Rapid screening of fatty acids using nanostructure-initiator mass spectrometry. <i>Analytical Chemistry</i> , 2010 , 82, 3751-5	7.8	28
109	Colloid-based multiplexed screening for plant biomass-degrading glycoside hydrolase activities in microbial communities. <i>Energy and Environmental Science</i> , 2011 , 4, 2884	35.4	28
108	Metabolome-proteome differentiation coupled to microbial divergence. MBio, 2010, 1,	7.8	26
107	Drought and plant litter chemistry alter microbial gene expression and metabolite production. <i>ISME Journal</i> , 2020 , 14, 2236-2247	11.9	26
106	Application of Black Silicon for Nanostructure-Initiator Mass Spectrometry. <i>Analytical Chemistry</i> , 2016 , 88, 1625-30	7.8	25
105	Stable-isotope probing reveals that hydrogen isotope fractionation in proteins and lipids in a microbial community are different and species-specific. <i>ACS Chemical Biology</i> , 2013 , 8, 1755-63	4.9	24
104	Taxonomic and Metabolic Incongruence in the Ancient Genus. Frontiers in Microbiology, 2019, 10, 2170	5.7	23
103	Need for Laboratory Ecosystems To Unravel the Structures and Functions of Soil Microbial Communities Mediated by Chemistry. <i>MBio</i> , 2018 , 9,	7.8	23
102	Metabolic footprinting of mutant libraries to map metabolite utilization to genotype. <i>ACS Chemical Biology</i> , 2013 , 8, 189-99	4.9	23

101	Characteristics of Wetting-Induced Bacteriophage Blooms in Biological Soil Crust. MBio, 2019, 10,	7.8	23
100	Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass. <i>New Phytologist</i> , 2019 , 222, 1149-1160	9.8	22
99	Large scale physiological readjustment during growth enables rapid, comprehensive and inexpensive systems analysis. <i>BMC Systems Biology</i> , 2010 , 4, 64	3.5	21
98	Ecosystem Fabrication (EcoFAB) Protocols for The Construction of Laboratory Ecosystems Designed to Study Plant-microbe Interactions. <i>Journal of Visualized Experiments</i> , 2018 ,	1.6	20
97	Phosphonium labeling for increasing metabolomic coverage of neutral lipids using electrospray ionization mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2009 , 23, 1849-55	2.2	20
96	MAGI: A Method for Metabolite Annotation and Gene Integration. ACS Chemical Biology, 2019 , 14, 704-7	7449	19
95	Extensive Turnover of Compatible Solutes in Cyanobacteria Revealed by Deuterium Oxide (DO) Stable Isotope Probing. <i>ACS Chemical Biology</i> , 2017 , 12, 674-681	4.9	18
94	A High-Throughput Mass Spectrometric Enzyme Activity Assay Enabling the Discovery of Cytochrome P450 Biocatalysts. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10114-10119	16.4	18
93	Exometabolomics Assisted Design and Validation of Synthetic Obligate Mutualism. <i>ACS Synthetic Biology</i> , 2016 , 5, 569-76	5.7	18
92	Encoding substrates with mass tags to resolve stereospecific reactions using Nimzyme. <i>Rapid Communications in Mass Spectrometry</i> , 2012 , 26, 611-5	2.2	18
91	Lipids as tumoricidal components of human Hactalbumin made lethal to tumor cells (HAMLET): unique and shared effects on signaling and death. <i>Journal of Biological Chemistry</i> , 2013 , 288, 17460-71	5.4	18
90	Low-dose ionizing radiation-induced blood plasma metabolic response in a diverse genetic mouse population. <i>Radiation Research</i> , 2012 , 178, 551-5	3.1	17
89	Multivariate analysis of a 3D mass spectral image for examining tissue heterogeneity. <i>Integrative Biology (United Kingdom)</i> , 2011 , 3, 460-7	3.7	17
88	Dynamic substrate preferences predict metabolic properties of a simple microbial consortium. <i>BMC Bioinformatics</i> , 2017 , 18, 57	3.6	16
87	Large Blooms of () Underlie the Response to Wetting of Cyanobacterial Biocrusts at Various Stages of Maturity. <i>MBio</i> , 2018 , 9,	7.8	16
86	New insight into the role of MMP14 in metabolic balance. <i>PeerJ</i> , 2016 , 4, e2142	3.1	16
85	OpenMSI Arrayed Analysis Toolkit: Analyzing Spatially Defined Samples Using Mass Spectrometry Imaging. <i>Analytical Chemistry</i> , 2017 , 89, 5818-5823	7.8	15
84	Morphology-Driven Control of Metabolite Selectivity Using Nanostructure-Initiator Mass Spectrometry. <i>Analytical Chemistry</i> , 2017 , 89, 6521-6526	7.8	15

(2021-2018)

83	A novel method to evaluate nutrient retention by biological soil crust exopolymeric matrix. <i>Plant and Soil</i> , 2018 , 429, 53-64	4.2	14
82	Versatile synthesis of probes for high-throughput enzyme activity screening. <i>Analytical and Bioanalytical Chemistry</i> , 2013 , 405, 4969-73	4.4	14
81	Development of a High Throughput Platform for Screening Glycoside Hydrolases Based on Oxime-NIMS. <i>Frontiers in Bioengineering and Biotechnology</i> , 2015 , 3, 153	5.8	14
80	Optimizing genome assembly from PCR-amplified metagenomes. <i>PeerJ</i> , 2019 , 7, e6902	3.1	14
79	Determination of glycoside hydrolase specificities during hydrolysis of plant cell walls using glycome profiling. <i>Biotechnology for Biofuels</i> , 2017 , 10, 31	7.8	13
78	Smartphone Analytics: Mobilizing the Lab into the Cloud for Omic-Scale Analyses. <i>Analytical Chemistry</i> , 2016 , 88, 9753-9758	7.8	13
77	Comparative Community Proteomics Demonstrates the Unexpected Importance of Actinobacterial Glycoside Hydrolase Family 12 Protein for Crystalline Cellulose Hydrolysis. <i>MBio</i> , 2016 , 7,	7.8	12
76	Construction of Viable Soil Defined Media Using Quantitative Metabolomics Analysis of Soil Metabolites. <i>Frontiers in Microbiology</i> , 2017 , 8, 2618	5.7	12
75	Deuterium-exchange metabolomics identifies N-methyl lyso phosphatidylethanolamines as abundant lipids in acidophilic mixed microbial communities. <i>Metabolomics</i> , 2012 , 8, 566-578	4.7	12
74	Improved genome annotation through untargeted detection of pathway-specific metabolites. <i>BMC Genomics</i> , 2011 , 12 Suppl 1, S6	4.5	12
73	Rhizosphere Carbon Turnover from Cradle to Grave: The Role of Microbe P lant Interactions. <i>Rhizosphere Biology</i> , 2021 , 51-73	0.8	12
72	Cervicovaginal Microbiome Composition Is Associated with Metabolic Profiles in Healthy Pregnancy. <i>MBio</i> , 2020 , 11,	7.8	12
71	A New Method to Correct for Habitat Filtering in Microbial Correlation Networks. <i>Frontiers in Microbiology</i> , 2019 , 10, 585	5.7	11
70	Unraveling heterogeneous susceptibility and the evolution of breast cancer using a systems biology approach. <i>Genome Biology</i> , 2015 , 16, 40	18.3	11
69	Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium,. <i>MBio</i> , 2017 , 8,	7.8	11
68	High throughput nanostructure-initiator mass spectrometry screening of microbial growth conditions for maximal Eglucosidase production. <i>Frontiers in Microbiology</i> , 2013 , 4, 365	5.7	11
67	Synthesis and characterization of peptide grafted porous polymer microstructures. <i>Biomacromolecules</i> , 2006 , 7, 750-4	6.9	11
66	Anaerobic gut fungi are an untapped reservoir of natural products. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	11

65	Bioactive diterpenoids impact the composition of the root-associated microbiome in maize (Zea mays). <i>Scientific Reports</i> , 2021 , 11, 333	4.9	11
64	Microbial Ecology on Solar Panels in Berkeley, CA, United States. <i>Frontiers in Microbiology</i> , 2018 , 9, 3043	3 5.7	10
63	Web of microbes (WoM): a curated microbial exometabolomics database for linking chemistry and microbes. <i>BMC Microbiology</i> , 2018 , 18, 115	4.5	10
62	In Situ X-Ray Tomography Imaging of Soil Water and Cyanobacteria From Biological Soil Crusts Undergoing Desiccation. <i>Frontiers in Environmental Science</i> , 2018 , 6,	4.8	10
61	Exometabolomic Analysis of Cross-Feeding Metabolites. <i>Metabolites</i> , 2017 , 7,	5.6	8
60	Nanostructure imaging mass spectrometry: the role of fluorocarbons in metabolite analysis and yoctomole level sensitivity. <i>Methods in Molecular Biology</i> , 2015 , 1203, 141-9	1.4	8
59	Root morphology and exudate availability are shaped by particle size and chemistry in. <i>Plant Direct</i> , 2020 , 4, e00207	3.3	8
58	Decrypting bacterial polyphenol metabolism in an anoxic wetland soil. <i>Nature Communications</i> , 2021 , 12, 2466	17.4	8
57	Robust automated mass spectra interpretation and chemical formula calculation using mixed integer linear programming. <i>Analytical Chemistry</i> , 2013 , 85, 9777-84	7.8	6
56	Combinatorial Screening of Biomimetic Protein Affinity Materials. <i>Advanced Materials</i> , 2008 , 20, 4691-4	6947	6
55	Light-directed movement of polymer microstructures. <i>Langmuir</i> , 2005 , 21, 4949-53	4	6
54	Metabolic imaging using nanostructure-initiator mass spectrometry (NIMS). <i>Methods in Molecular Biology</i> , 2014 , 1198, 313-29	1.4	6
53	Mass Spectrometry for Natural Product Discovery 2020 , 263-306		6
52	A multi-omic characterization of temperature stress in a halotolerant Scenedesmus strain for algal biotechnology. <i>Communications Biology</i> , 2021 , 4, 333	6.7	6
51	Rapid characterization of the activities of lignin-modifying enzymes based on nanostructure-initiator mass spectrometry (NIMS). <i>Biotechnology for Biofuels</i> , 2018 , 11, 266	7.8	6
50	GNPS Dashboard: collaborative exploration of mass spectrometry data in the web browser. <i>Nature Methods</i> , 2021 ,	21.6	5
49	CRAGE-Duet Facilitates Modular Assembly of Biological Systems for Studying Plant-Microbe Interactions. <i>ACS Synthetic Biology</i> , 2020 , 9, 2610-2615	5.7	5
48	Untargeted Soil Metabolomics Using Liquid Chromatography-Mass Spectrometry and Gas Chromatography-Mass Spectrometry. <i>Methods in Molecular Biology</i> , 2019 , 1859, 97-109	1.4	5

47	Flux balance modeling to predict bacterial survival during pulsed-activity events. <i>Biogeosciences</i> , 2018 , 15, 2219-2229	4.6	5
46	Use of Nanostructure-Initiator Mass Spectrometry to Deduce Selectivity of Reaction in Glycoside Hydrolases. <i>Frontiers in Bioengineering and Biotechnology</i> , 2015 , 3, 165	5.8	4
45	Processing of grassland soil C-N compounds into soluble and volatile molecules is depth stratified and mediated by genomically novel bacteria and archaea		4
44	Shed Light in the DaRk LineagES of the Fungal Tree of Life-STRES. <i>Life</i> , 2020 , 10,	3	4
43	A High-Throughput Mass Spectrometric Enzyme Activity Assay Enabling the Discovery of Cytochrome P450 Biocatalysts. <i>Angewandte Chemie</i> , 2019 , 131, 10220-10225	3.6	3
42	Noninvasive Mapping of Photosynthetic Heterogeneity in Biological Soil Crusts by Positron Emission Tomography: Carbon Fixation. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 393-398	11	3
41	Ecological generalism drives hyperdiversity of secondary metabolite gene clusters in xylarialean endophytes. <i>New Phytologist</i> , 2021 ,	9.8	3
40	Vertical movement of soluble carbon and nutrients from biocrusts to subsurface mineral soils. <i>Geoderma</i> , 2022 , 405, 115495	6.7	3
39	Study of Oak Ridge soils using BONCAT-FACS-Seq reveals that a large fraction of the soil microbiome is active		3
38	Multi-lab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass		3
37	Physiological adaptations of leaf litter microbial communities to long-term drought		3
36	Specialized Plant Growth Chamber Designs to Study Complex Rhizosphere Interactions. <i>Frontiers in Microbiology</i> , 2021 , 12, 625752	5.7	3
35	Faster, better, and cheaper: harnessing microfluidics and mass spectrometry for biotechnology. <i>RSC Chemical Biology</i> , 2021 , 2, 1331-1351	3	3
34	Novel and Emerging Capabilities that Can Provide a Holistic Understanding of the Plant Root Microbiome. <i>Phytobiomes Journal</i> , 2021 , 5, 122-132	4.8	3
33	Nanostructure-Initiator Mass Spectrometry (NIMS) for the Analysis of Enzyme Activities. <i>Current Protocols in Chemical Biology</i> , 2012 , 4, 123-142	1.8	3
32	Long-read metagenomics of soil communities reveals phylum-specific secondary metabolite dynamics. <i>Communications Biology</i> , 2021 , 4, 1302	6.7	2
31	Cervicovaginal microbiome composition drives metabolic profiles in healthy pregnancy		2
30	Root morphology and exudate availability is shaped by particle size and chemistry in Brachypodium dist	tachyo	·N2

29	A structural and kinetic survey of GH5_4 endoglucanases reveals determinants of broad substrate specificity and opportunities for biomass hydrolysis. <i>Journal of Biological Chemistry</i> , 2020 , 295, 17752-1	7 7 7 6 9	2
28	GNPS Dashboard: Collaborative Analysis of Mass Spectrometry Data in the Web Browser		2
27	Genomics, Exometabolomics, and Metabolic Probing Reveal Conserved Proteolytic Metabolism of and Three Candidate Species From China and Japan. <i>Frontiers in Microbiology</i> , 2021 , 12, 632731	5.7	2
26	Reply to: Examining microbe-metabolite correlations by linear methods. <i>Nature Methods</i> , 2021 , 18, 40-4	1 21.6	2
25	Long-read metagenomics of soil communities reveals phylum-specific secondary metabolite dynamics		2
24	Getting back to the grass roots: harnessing specialized metabolites for improved crop stress resilience. <i>Current Opinion in Biotechnology</i> , 2021 , 70, 174-186	11.4	2
23	CRAGE-CRISPR facilitates rapid activation of secondary metabolite biosynthetic gene clusters in bacteria. <i>Cell Chemical Biology</i> , 2021 ,	8.2	2
22	Insulator Nanostructure Desorption Ionization Mass Spectrometry. <i>Analytical Chemistry</i> , 2018 , 90, 9657	- 9 6661	1
21	Development of platforms for functional characterization and production of phenazines using a multi-chassis approach via CRAGE. <i>Metabolic Engineering</i> , 2021 , 69, 188-188	9.7	1
20	Linking soil biology and chemistry using bacterial isolate exometabolite profiles		1
19	Drought shifts sorghum root metabolite and microbiome profiles and enriches the stress response factor pipecolic acid		1
18	MAGI: A method for metabolite, annotation, and gene integration		1
17	A New Method to Correct for Habitat Filtering in Microbial Correlation Networks		1
16	Dynamic substrate preferences and predicted metabolic properties of a simple microbial consortium		1
15	A multiplexed nanostructure-initiator mass spectrometry (NIMS) assay for simultaneously detecting glycosyl hydrolase and lignin modifying enzyme activities. <i>Scientific Reports</i> , 2021 , 11, 11803	4.9	1
14	Analysis and Interpretation of Mass Spectrometry Imaging Datasets. <i>Comprehensive Analytical Chemistry</i> , 2018 , 82, 369-386	1.9	1
13	Engineering sorghum for higher 4-hydroxybenzoic acid content		1
12	Biofilm Interaction Mapping and Analysis (BIMA): A tool for deconstructing interspecific interactions in co-culture biofilms		1

LIST OF PUBLICATIONS

11	Biofilm Interaction Mapping and Analysis (BIMA) or interspecific interactions in Co-culture Biofilms <i>Frontiers in Microbiology</i> , 2021 , 12, 757856	5.7	1
10	Identification of Effector Metabolites Using Exometabolite Profiling of Diverse Microalgae. <i>MSystems</i> , 2021 , e0083521	7.6	O
9	Metabolomic Patterns of Septoria Canker Resistant and Susceptible Genotypes 24 Hours Postinoculation. <i>Phytopathology</i> , 2021 , PHYTO02210053R	3.8	О
8	Cocultivation of Anaerobic Fungi with Rumen Bacteria Establishes an Antagonistic Relationship. <i>MBio</i> , 2021 , 12, e0144221	7.8	O
7	SIMILE enables alignment of tandem mass spectra with statistical significance <i>Nature Communications</i> , 2022 , 13, 2510	17.4	0
6	The Small-Molecule Dimension: Mass-Spectrometry-Based Metabolomics, Enzyme Assays, and Imaging 2011 , 675-682		
5	Biofuels and biomaterials from microbes315-335		
4	Meta-analysis of global metabolomics and proteomics data to link alterations with phenotype. <i>Spectroscopy</i> , 2011 , 26, 151-154		
3	Retinoic acid induces a metabolic switch in SH-SY5Y cells from glycolysis to oxidative phosphorylation. <i>FASEB Journal</i> , 2012 , 26, 967.1	0.9	
2	Exometabolomics for Linking Soil Carbon Dynamics to Microbial Communities 2016 , 119-145		
1	Attracting and Retaining Top Scientists and Engineers at U.S. National Laboratories and Universities: Listening to the Next Generation. <i>Electrochemical Society Interface</i> , 2019 , 28, 34-36	3.6	