Meng Zhao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1630244/meng-zhao-publications-by-year.pdf

Version: 2024-04-16

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38
papers

2,247
citations

21
h-index

44
g-index

44
ext. papers

21
the papers

3,340
ext. citations

12.9
avg, IF

L-index

#	Paper	IF	Citations
38	Frontispiece: Surface Gelation on Disulfide Electrocatalysts in LithiumBulfur Batteries. Angewandte Chemie - International Edition, 2022, 61,	16.4	1
37	The formation of crystalline lithium sulfide on electrocatalytic surfaces in lithiumBulfur batteries. Journal of Energy Chemistry, 2022 , 64, 568-573	12	10
36	Evaluation on a 400 Wh kgll lithium ulfur pouch cell. <i>Journal of Energy Chemistry</i> , 2022 , 66, 24-29	12	23
35	Full-Range Redox Mediation on Sulfur Redox Kinetics for High-Performance Lithium-Sulfur Batteries. <i>Batteries and Supercaps</i> , 2022 , 5,	5.6	2
34	Towards Practical High-Energy-Density Lithium-Sulfur Pouch Cells: A Review <i>Advanced Materials</i> , 2022 , e2201555	24	12
33	Semi-Immobilized Molecular Electrocatalysts for High-Performance Lithium-Sulfur Batteries. Journal of the American Chemical Society, 2021 , 143, 19865-19872	16.4	33
32	Anode Material Options Toward 500 Wh kg Lithium-Sulfur Batteries. <i>Advanced Science</i> , 2021 , 9, e21039	112 3.6	13
31	Lithium-Sulfur Batteries: An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in LithiumBulfur Batteries (Adv. Mater. 13/2021). <i>Advanced Materials</i> , 2021 , 33, 2170100	24	5
30	Regulation of carbon distribution to construct high-sulfur-content cathode in lithiumBulfur batteries. <i>Journal of Energy Chemistry</i> , 2021 , 56, 203-208	12	49
29	Redox mediator assists electron transfer in lithiumBulfur batteries with sulfurized polyacrylonitrile cathodes. <i>EcoMat</i> , 2021 , 3, e12066	9.4	27
28	An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2021 , 33, e2007298	24	61
27	Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithiumBulfur batteries. <i>EScience</i> , 2021 , 1, 44-44		45
26	Surface Gelation on Disulfide Electrocatalysts in Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	7
25	REktitelbild: Electrochemical Phase Evolution of Metal-Based Pre-Catalysts for High-Rate Polysulfide Conversion (Angew. Chem. 23/2020). <i>Angewandte Chemie</i> , 2020 , 132, 9278-9278	3.6	1
24	Electrochemical Phase Evolution of Metal-Based Pre-Catalysts for High-Rate Polysulfide Conversion. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9011-9017	16.4	106
23	Electrochemical Phase Evolution of Metal-Based Pre-Catalysts for High-Rate Polysulfide Conversion. <i>Angewandte Chemie</i> , 2020 , 132, 9096-9102	3.6	21
22	A Perspective toward Practical Lithium-Sulfur Batteries. ACS Central Science, 2020, 6, 1095-1104	16.8	184

(2019-2020)

21	Spatial and Kinetic Regulation of Sulfur Electrochemistry on Semi-Immobilized Redox Mediators in Working Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 17670-17675	16.4	26
20	Spatial and Kinetic Regulation of Sulfur Electrochemistry on Semi-Immobilized Redox Mediators in Working Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 17823-17828	3.6	3
19	Enhanced electrochemical performance of LiNiCoMnO with a 3D-SiO framework by a new negative pressure immersion method. <i>Dalton Transactions</i> , 2020 , 49, 2933-2940	4.3	7
18	Precise anionic regulation of NiFe hydroxysulfide assisted by electrochemical reactions for efficient electrocatalysis. <i>Energy and Environmental Science</i> , 2020 , 13, 1711-1716	35.4	57
17	MnO2 supported on acrylic cloth as functional separator for high-performance lithiumBulfur batteries. <i>Journal of Power Sources</i> , 2020 , 464, 228181	8.9	24
16	Lithium-Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities. Angewandte Chemie - International Edition, 2020, 59, 12636-12652	16.4	230
15	Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10732-1074.	5 ^{16.4}	56
14	Ether-compatible lithium sulfur batteries with robust performance via selenium doping. <i>Journal of Energy Chemistry</i> , 2020 , 46, 199-201	12	3
13	The reduction of interfacial transfer barrier of Li ions enabled by inorganics-rich solid-electrolyte interphase. <i>Energy Storage Materials</i> , 2020 , 28, 401-406	19.4	38
12	Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium Bulfur Batteries with Sulfurized Polyacrylonitrile Cathodes. <i>Angewandte Chemie</i> , 2020 , 132, 10821-10834	3.6	17
11	Redox Comediation with Organopolysulfides in Working Lithium-Sulfur Batteries. <i>CheM</i> , 2020 , 6, 3297-3	336.2	84
10	The Pursuit for Practical Lithium-Sulfur Batteries. <i>CheM</i> , 2020 , 6, 3161-3162	16.2	2
9	Dictating High-Capacity LithiumBulfur Batteries through Redox-Mediated Lithium Sulfide Growth. Small Methods, 2020 , 4, 1900344	12.8	58
8	Lithium-Schwefel-Batterien mit Magerelektrolyt: Herausforderungen und Perspektiven. <i>Angewandte Chemie</i> , 2020 , 132, 12736-12753	3.6	17
7	Implanting Atomic Cobalt within Mesoporous Carbon toward Highly Stable Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2019 , 31, e1903813	24	215
6	Innentitelbild: Activating Inert Metallic Compounds for High-Rate LithiumBulfur Batteries Through In Situ Etching of Extrinsic Metal (Angew. Chem. 12/2019). <i>Angewandte Chemie</i> , 2019 , 131, 3692-3692	3.6	1
5	Conductive and Catalytic Triple-Phase Interfaces Enabling Uniform Nucleation in High-Rate LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1802768	21.8	347
4	Activating Inert Metallic Compounds for High-Rate Lithium-Sulfur Batteries Through In Situ Etching of Extrinsic Metal. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 3779-3783	16.4	204

2	Activating Inert Metallic Compounds for High-Rate LithiumBulfur Batteries Through In Situ Etching
	of Extrinsic Metal. Angewandte Chemie, 2019 , 131, 3819-3823

3.6 34

Heterogeneous/Homogeneous Mediators for High-Energy-Density LithiumBulfur Batteries: Progress and Prospects. *Advanced Functional Materials*, **2018**, 28, 1707536

15.6 197

Understanding the Impedance Response of Lithium Polysulfide Symmetric Cells. Small Science,2100042

19