Cheng Cui ## List of Publications by Citations Source: https://exaly.com/author-pdf/1630185/cheng-cui-publications-by-citations.pdf Version: 2024-04-19 This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above. The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article. | 51 | 3,108 | 29 | 52 | |-------------|----------------------|---------|---------| | papers | citations | h-index | g-index | | 52 | 3,938 ext. citations | 11.8 | 5.24 | | ext. papers | | avg, IF | L-index | | # | Paper | IF | Citations | |----|---|------|-----------| | 51 | Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1412-5 | 16.4 | 304 | | 50 | Aptamer/AuNP Biosensor for Colorimetric Profiling of Exosomal Proteins. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11916-11920 | 16.4 | 281 | | 49 | Aptasensor with Expanded Nucleotide Using DNA Nanotetrahedra for Electrochemical Detection of Cancerous Exosomes. <i>ACS Nano</i> , 2017 , 11, 3943-3949 | 16.7 | 264 | | 48 | A Nonenzymatic Hairpin DNA Cascade Reaction Provides High Signal Gain of mRNA Imaging inside Live Cells. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4900-3 | 16.4 | 234 | | 47 | DNA "nano-claw": logic-based autonomous cancer targeting and therapy. <i>Journal of the American Chemical Society</i> , 2014 , 136, 1256-9 | 16.4 | 176 | | 46 | Metal-Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. <i>Nano-Micro Letters</i> , 2020 , 12, 103 | 19.5 | 137 | | 45 | Molecular Recognition-Based DNA Nanoassemblies on the Surfaces of Nanosized Exosomes.
Journal of the American Chemical Society, 2017 , 139, 5289-5292 | 16.4 | 134 | | 44 | Cell membrane-anchored biosensors for real-time monitoring of the cellular microenvironment. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13090-3 | 16.4 | 106 | | 43 | Ionic Functionalization of Hydrophobic Colloidal Nanoparticles To Form Ionic Nanoparticles with Enzymelike Properties. <i>Journal of the American Chemical Society</i> , 2015 , 137, 14952-8 | 16.4 | 105 | | 42 | Self-Assembled Aptamer-Grafted Hyperbranched Polymer Nanocarrier for Targeted and Photoresponsive Drug Delivery. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 17048-17052 | 16.4 | 92 | | 41 | ZrMOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapy. <i>Chemical Science</i> , 2018 , 9, 7505-7509 | 9.4 | 75 | | 40 | Self-Assembled DNA Immunonanoflowers as Multivalent CpG Nanoagents. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 24069-74 | 9.5 | 74 | | 39 | Thiol-ene click chemistry: a biocompatible way for orthogonal bioconjugation of colloidal nanoparticles. <i>Chemical Science</i> , 2017 , 8, 6182-6187 | 9.4 | 71 | | 38 | Versatile surface engineering of porous nanomaterials with bioinspired polyphenol coatings for targeted and controlled drug delivery. <i>Nanoscale</i> , 2016 , 8, 8600-6 | 7.7 | 66 | | 37 | Bioapplications of Cell-SELEX-Generated Aptamers in Cancer Diagnostics, Therapeutics, Theranostics and Biomarker Discovery: A Comprehensive Review. <i>Cancers</i> , 2018 , 10, | 6.6 | 65 | | 36 | Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2221-2231 | 16.4 | 65 | | 35 | Construction of self-powered cytosensing device based on ZnO nanodisks@g-CN quantum dots and application in the detection of CCRF-CEM cells. <i>Nano Energy</i> , 2018 , 46, 101-109 | 17.1 | 63 | ## (2020-2018) | 34 | Modulating Aptamer Specificity with pH-Responsive DNA Bonds. <i>Journal of the American Chemical Society</i> , 2018 , 140, 13335-13339 | 16.4 | 63 | |----|--|----------------|----| | 33 | A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates. <i>Nature Chemistry</i> , 2020 , 12, 381-390 | 17.6 | 62 | | 32 | Aptamers against Cells Overexpressing Glypican 3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12372-5 | -16.4
D | 60 | | 31 | Facile approach to prepare HSA-templated MnO nanosheets as oxidase mimic for colorimetric detection of glutathione. <i>Talanta</i> , 2019 , 195, 40-45 | 6.2 | 53 | | 30 | Elucidation and Structural Modeling of CD71 as a Molecular Target for Cell-Specific Aptamer Binding. <i>Journal of the American Chemical Society</i> , 2019 , 141, 10760-10769 | 16.4 | 48 | | 29 | Using modified aptamers for site specific protein-aptamer conjugations. <i>Chemical Science</i> , 2016 , 7, 2157 | -3 .461 | 41 | | 28 | Enhanced in Vivo Blood-Brain Barrier Penetration by Circular Tau-Transferrin Receptor Bifunctional Aptamer for Tauopathy Therapy. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3862-3872 | 16.4 | 36 | | 27 | DNA-based artificial molecular signaling system that mimics basic elements of reception and response. <i>Nature Communications</i> , 2020 , 11, 978 | 17.4 | 35 | | 26 | Aptamer Displacement Reaction from Live-Cell Surfaces and Its Applications. <i>Journal of the American Chemical Society</i> , 2019 , 141, 17174-17179 | 16.4 | 33 | | 25 | Circular Bispecific Aptamer-Mediated Artificial Intercellular Recognition for Targeted T Cell Immunotherapy. <i>ACS Nano</i> , 2020 , 14, 9562-9571 | 16.7 | 32 | | 24 | Enhanced Targeted Gene Transduction: AAV2 Vectors Conjugated to Multiple Aptamers via Reducible Disulfide Linkages. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2-5 | 16.4 | 30 | | 23 | DNA micelle flares: a study of the basic properties that contribute to enhanced stability and binding affinity in complex biological systems. <i>Chemical Science</i> , 2016 , 7, 6041-6049 | 9.4 | 30 | | 22 | Aptamer-based multifunctional ligand-modified UCNPs for targeted PDT and bioimaging. <i>Nanoscale</i> , 2018 , 10, 10986-10990 | 7.7 | 29 | | 21 | Aptamer/AuNP Biosensor for Colorimetric Profiling of Exosomal Proteins. <i>Angewandte Chemie</i> , 2017 , 129, 12078-12082 | 3.6 | 29 | | 20 | Recognition-then-Reaction Enables Site-Selective Bioconjugation to Proteins on Live-Cell Surfaces. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11954-11957 | 16.4 | 27 | | 19 | Cross-Linked Aptamer-Lipid Micelles for Excellent Stability and Specificity in Target-Cell Recognition. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11589-11593 | 16.4 | 24 | | 18 | Self-Assembled Aptamer-Grafted Hyperbranched Polymer Nanocarrier for Targeted and Photoresponsive Drug Delivery. <i>Angewandte Chemie</i> , 2018 , 130, 17294-17298 | 3.6 | 23 | | 17 | Lipid-oligonucleotide conjugates for bioapplications. <i>National Science Review</i> , 2020 , 7, 1933-1953 | 10.8 | 18 | | 16 | Visible Light-Driven Self-Powered Device Based on a Straddling Nano-Heterojunction and Bio-Application for the Quantitation of Exosomal RNA. <i>ACS Nano</i> , 2019 , 13, 1817-1827 | 16.7 | 15 | |----|--|------|----| | 15 | Aptamer-Directed Protein-Specific Multiple Modifications of Membrane Glycoproteins on Living Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 37845-37850 | 9.5 | 15 | | 14 | Recognition-then-Reaction Enables Site-Selective Bioconjugation to Proteins on Live-Cell Surfaces. <i>Angewandte Chemie</i> , 2017 , 129, 12116-12119 | 3.6 | 13 | | 13 | Transducing Complex Biomolecular Interactions by Temperature-Output Artificial DNA Signaling Networks. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14234-14239 | 16.4 | 13 | | 12 | Functional Aptamer-Embedded Nanomaterials for Diagnostics and Therapeutics. <i>ACS Applied Materials & Diagnostics and Therapeutics Therapeu</i> | 9.5 | 12 | | 11 | Molecular domino reactor built by automated modular synthesis for cancer treatment. <i>Theranostics</i> , 2020 , 10, 4030-4041 | 12.1 | 9 | | 10 | Aptamers against Cells Overexpressing Glypican 3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution. <i>Angewandte Chemie</i> , 2016 , 128, 12560-12563 | 3.6 | 8 | | 9 | Cross-Linked Aptamer[lipid Micelles for Excellent Stability and Specificity in Target-Cell Recognition. <i>Angewandte Chemie</i> , 2018 , 130, 11763-11767 | 3.6 | 6 | | 8 | A bispecific circular aptamer tethering a built-in universal molecular tag for functional protein delivery. <i>Chemical Science</i> , 2020 , 11, 9648-9654 | 9.4 | 5 | | 7 | Logic-Gated Cell-Derived Nanovesicles via DNA-Based Smart Recognition Module. <i>ACS Applied Materials & ACS App</i> | 9.5 | 5 | | 6 | Precise Deposition of Polydopamine on Cancer Cell Membrane as Artificial Receptor for Targeted Drug Delivery. <i>IScience</i> , 2020 , 23, 101750 | 6.1 | 4 | | 5 | Enhancing the Nucleolytic Resistance and Bioactivity of Functional Nucleic Acids by Diverse Nanostructures through in Situ Polymerization-Induced Self-assembly. <i>ChemBioChem</i> , 2021 , 22, 754-759 | 3.8 | 4 | | 4 | Engineering G-quadruplex aptamer to modulate its binding specificity. <i>National Science Review</i> , 2021 , 8, nwaa202 | 10.8 | 4 | | 3 | Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives. <i>Angewandte Chemie</i> , 2021 , 133, 2249-2259 | 3.6 | 3 | | 2 | A microRNA-21-responsive doxorubicin-releasing sticky-flare for synergistic anticancer with silencing of microRNA and chemotherapy. <i>Science China Chemistry</i> , 2021 , 64, 1009-1019 | 7.9 | 2 | | 1 | Plasmon Coupling in DNA-Assembled Silver Nanoclusters. <i>Journal of the American Chemical Society</i> , 2021 , 143, 14573-14580 | 16.4 | 2 |