Chao-Fa Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1630156/publications.pdf

Version: 2024-02-01

933447 996975 16 234 10 15 citations h-index g-index papers 17 17 17 172 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fabric response to stress probing in granular materials: Two-dimensional, anisotropic systems. Computers and Geotechnics, 2022, 146, 104695.	4.7	3
2	Effects of surface roughness on liquid bridge capillarity and droplet wetting. Powder Technology, 2021, 378, 487-496.	4.2	35
3	Evolution of fabric anisotropy of granular soils: x-ray tomography measurements and theoretical modelling. Computers and Geotechnics, 2021, 133, 104046.	4.7	25
4	Particle and Continuum Rotations of Granular Materials: Discrete-Element Method Simulations and Experiment. Journal of Engineering Mechanics - ASCE, 2021, 147, .	2.9	2
5	Capillary bridges between spherical particles under suction control: Rupture distances and capillary forces. Powder Technology, 2020, 360, 622-634.	4.2	17
6	An original method for measuring liquid surface tension from capillary bridges between two equal-sized spherical particles. Powder Technology, 2020, 363, 349-359.	4.2	20
7	Determination of geometrical parameters of the microstructure of a porous medium: Application to cementitious materials. International Communications in Heat and Mass Transfer, 2020, 117, 104786.	5.6	4
8	Theoretical and experimental study of capillary bridges between two parallel planes. European Journal of Environmental and Civil Engineering, 2020, , 1-11.	2.1	4
9	An evolution law for fabric anisotropy and its application in micromechanical modelling of granular materials. International Journal of Solids and Structures, 2020, 196-197, 53-66.	2.7	24
10	Capillary bridges between unequal-sized spherical particles: Rupture distances and capillary forces. Powder Technology, 2019, 346, 462-476.	4.2	16
11	Multiscale modeling of unsaturated granular materials based on thermodynamic principles. Continuum Mechanics and Thermodynamics, 2019, 31, 341-359.	2.2	14
12	Thermomechanical formulation for micromechanical elasto-plasticity in granular materials. International Journal of Solids and Structures, 2018, 138, 64-75.	2.7	23
13	Integrating a micromechanical model for multiscale analyses. International Journal for Numerical Methods in Engineering, 2018, 114, 105-127.	2.8	19
14	A multiscale approach for investigating the effect of microstructural instability on global failure in granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42, 2065-2094.	3.3	9
15	Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime. Powder Technology, 2018, 339, 827-837.	4.2	15
16	A Micromechanical Model for Unsaturated Soils Based on Thermodynamics. , 2017, , .		4