Anália Maria Garcia Lourenço

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1629647/publications.pdf

Version: 2024-02-01

101 papers 2,923 citations

20 h-index 51 g-index

109 all docs

109 does citations

109 times ranked 4999 citing authors

#	Article	IF	CITATIONS
1	Critical review on biofilm methods. Critical Reviews in Microbiology, 2017, 43, 313-351.	2.7	693
2	Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition and Food Research, 2017, 61, 1600240.	1.5	678
3	Information Retrieval and Text Mining Technologies for Chemistry. Chemical Reviews, 2017, 117, 7673-7761.	23.0	195
4	Text mining for the biocuration workflow. Database: the Journal of Biological Databases and Curation, 2012, 2012, bas020-bas020.	1.4	132
5	New trends in peptide-based anti-biofilm strategies: a review of recent achievements and bioinformatic approaches. Biofouling, 2012, 28, 1033-1061.	0.8	128
6	Web scraping technologies in an API world. Briefings in Bioinformatics, 2014, 15, 788-797.	3.2	84
7	Influence of the region of origin on the mycobiota of grapes with emphasis on Aspergillus and Penicillium species. Mycological Research, 2006, 110, 971-978.	2.5	70
8	From amino acid sequence to bioactivity: The biomedical potential of antitumor peptides. Protein Science, 2016, 25, 1084-1095.	3.1	55
9	Quorum sensing inhibition in <i>Pseudomonas aeruginosa</i> biofilms: new insights through network mining. Biofouling, 2017, 33, 128-142.	0.8	52
10	Using Twitter to Understand the Human Bowel Disease Community: Exploratory Analysis of Key Topics. Journal of Medical Internet Research, 2019, 21, e12610.	2.1	47
11	Minimum information about a biofilm experiment (MIABiE): standards for reporting experiments and data on sessile microbial communities living at interfaces. Pathogens and Disease, 2014, 70, 250-256.	0.8	43
12	Tackling probiotic and gut microbiota functionality through proteomics. Journal of Proteomics, 2016, 147, 28-39.	1.2	40
13	Searching for new strategies against biofilm infections: Colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single- and double-species biofilms. PLoS ONE, 2017, 12, e0174654.	1.1	39
14	Polymicrobial Ventilator-Associated Pneumonia: Fighting In Vitro Candida albicans-Pseudomonas aeruginosa Biofilms with Antifungal-Antibacterial Combination Therapy. PLoS ONE, 2017, 12, e0170433.	1.1	36
15	BiofOmics: A Web Platform for the Systematic and Standardized Collection of High-Throughput Biofilm Data. PLoS ONE, 2012, 7, e39960.	1.1	35
16	@Note: A workbench for Biomedical Text Mining. Journal of Biomedical Informatics, 2009, 42, 710-720.	2.5	34
17	Extraction of Pharmacokinetic Evidence of Drug–Drug Interactions from the Literature. PLoS ONE, 2015, 10, e0122199.	1.1	32
18	MAHMI database: a comprehensive MetaHit-based resource for the study of the mechanism of action of the human microbiota. Database: the Journal of Biological Databases and Curation, 2017, 2017, baw157.	1.4	29

#	Article	IF	CITATIONS
19	Heteroresistance to colistin in <i>Klebsiella pneumoniae</i> i>is triggered by small colony variants sub-populations within biofilms. Pathogens and Disease, 2016, 74, ftw036.	0.8	28
20	Catching web crawlers in the act. , 2006, , .		21
21	Marky: A tool supporting annotation consistency in multi-user and iterative document annotation projects. Computer Methods and Programs in Biomedicine, 2015, 118, 242-251.	2.6	21
22	BlasterJS: A novel interactive JavaScript visualisation component for BLAST alignment results. PLoS ONE, 2018, 13, e0205286.	1.1	21
23	In Silico Screening of the Human Gut Metaproteome Identifies Th17-Promoting Peptides Encrypted in Proteins of Commensal Bacteria. Frontiers in Microbiology, 2017, 8, 1726.	1.5	20
24	Optimism and pessimism analysis using deep learning on COVID-19 related twitter conversations. Information Processing and Management, 2022, 59, 102918.	5 . 4	20
25	A network perspective on antimicrobial peptide combination therapies: the potential of colistin, polymyxin B and nisin. International Journal of Antimicrobial Agents, 2017, 49, 668-676.	1.1	19
26	MorphoCol: An ontology-based knowledgebase for the characterisation of clinically significant bacterial colony morphologies. Journal of Biomedical Informatics, 2015, 55, 55-63.	2.5	17
27	FISHji: New ImageJ macros for the quantification of fluorescence in epifluorescence images. Biochemical Engineering Journal, 2016, 112, 61-69.	1.8	16
28	BioDR: Semantic indexing networks for biomedical document retrieval. Expert Systems With Applications, 2010, 37, 3444-3453.	4.4	14
29	Exploring anti-quorum sensing and anti-virulence based strategies to fight Candida albicans infections: an in silico approach. FEMS Yeast Research, $2018,18,.$	1.1	12
30	Computational resources and strategies to construct single-molecule metabolic models of microbial cells. Briefings in Bioinformatics, 2016, 17, 863-876.	3. 2	11
31	Revisiting the Metabolic Capabilities of Bifidobacterium longum susbp. longum and Bifidobacterium longum subsp. infantis from a Glycoside Hydrolase Perspective. Microorganisms, 2020, 8, 723.	1.6	11
32	A linear classifier based on entity recognition tools and a statistical approach to method extraction in the protein-protein interaction literature. BMC Bioinformatics, 2011, 12, S12.	1.2	10
33	The Markyt visualisation, prediction and benchmark platform for chemical and gene entity recognition at BioCreative/CHEMDNER challenge. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw120.	1.4	10
34	Resources and tools for the high-throughput, multi-omic study of intestinal microbiota. Briefings in Bioinformatics, 2019, 20, 1032-1056.	3.2	10
35	Construction of antimicrobial peptide-drug combination networks from scientific literature based on a semi-automated curation workflow. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw143.	1.4	10
36	Stringent response of Escherichia coli: revisiting the bibliome using literature mining. Microbial Informatics and Experimentation, 2011 , 1 , 14 .	7.6	9

#	Article	IF	Citations
37	Agent-based model of diffusion of N-acyl homoserine lactones in a multicellular environment of <i>Pseudomonas aeruginosa (i> and <i> Candida albicans (i>. Biofouling, 2018, 34, 335-345.</i></i>	0.8	9
38	DEWE: A novel tool for executing differential expression RNA-Seq workflows in biomedical research. Computers in Biology and Medicine, 2019, 107, 197-205.	3.9	9
39	Understanding the social evolution of the Java community in Stack Overflow: A 10-year study of developer interactions. Future Generation Computer Systems, 2020, 105, 446-454.	4.9	9
40	Mining the sociome for Health Informatics: Analysis of therapeutic lifestyle adherence of diabetic patients in Twitter. Future Generation Computer Systems, 2020, 110, 214-232.	4.9	9
41	In silico Approach for Unveiling the Glycoside Hydrolase Activities in Faecalibacterium prausnitzii Through a Systematic and Integrative Large-Scale Analysis. Frontiers in Microbiology, 2019, 10, 517.	1.5	8
42	In silico prediction reveals the existence of potential bioactive neuropeptides produced by the human gut microbiota. Food Research International, 2019, 119, 221-226.	2.9	8
43	A Study of the Short and Long-term Regulation of E. coli Metabolic Pathways. Journal of Integrative Bioinformatics, 2011, 8, 195-209.	1.0	7
44	Enabling systematic, harmonised and large-scale biofilms data computation: The Biofilms Experiment Workbench. Computer Methods and Programs in Biomedicine, 2015, 118, 309-321.	2.6	7
45	Online visibility of software-related web sites: The case of biomedical text mining tools. Information Processing and Management, 2019, 56, 565-583.	5.4	7
46	Agent-Based Spatiotemporal Simulation of Biomolecular Systems within the Open Source MASON Framework. BioMed Research International, 2015, 2015, 1-12.	0.9	6
47	Single Molecule Simulation of Diffusion and Enzyme Kinetics. Journal of Physical Chemistry B, 2016, 120, 3809-3820.	1.2	6
48	The extracellular proteins of Lactobacillus acidophilus DSM 20079T display anti-inflammatory effect in both in piglets, healthy human donors and Crohn's Disease patients. Journal of Functional Foods, 2020, 64, 103660.	1.6	6
49	Reconstruction of the Network of Experimentally Validated AMP-Drug Combinations Against Pseudomonas aeruginosa Infections. Current Bioinformatics, 2016, 11, 523-530.	0.7	6
50	Semantic annotation of biological concepts interplaying microbial cellular responses. BMC Bioinformatics, 2011, 12, 460.	1.2	5
51	BIOMedical Search Engine Framework: Lightweight and customized implementation of domain-specific biomedical search engines. Computer Methods and Programs in Biomedicine, 2016, 131, 63-77.	2.6	5
52	A framework to extract biomedical knowledge from gluten-related tweets: The case of dietary concerns in digital era. Artificial Intelligence in Medicine, 2021, 118, 102131.	3.8	5
53	Agent-based knowledge extraction services inside enterprise data warehousing systems environments. , 0 , , .		4
54	Challenges in integrating Escherichia coli molecular biology data. Briefings in Bioinformatics, 2011, 12, 91-103.	3.2	4

#	Article	IF	CITATIONS
55	Data Quality in Biofilm High-Throughput Routine Analysis: Intralaboratory Protocol Adaptation and Experiment Reproducibility. Journal of AOAC INTERNATIONAL, 2015, 98, 1721-1727.	0.7	4
56	A peptidome-based phylogeny pipeline reveals differential peptides at the strain level within Bifidobacterium animalis subsp. lactis. Food Microbiology, 2016, 60, 137-141.	2.1	4
57	Next generation community assessment of biomedical entity recognition web servers: metrics, performance, interoperability aspects of BeCalm. Journal of Cheminformatics, 2019, 11, 42.	2.8	4
58	Improving Phylogeny Reconstruction at the Strain Level Using Peptidome Datasets. PLoS Computational Biology, 2016, 12, e1005271.	1.5	4
59	Computational approaches to standard-compliant biofilm data for reliable analysis and integration. Journal of Integrative Bioinformatics, 2012, 9, 57-68.	1.0	3
60	A new approach to bacterial colony morphotyping by matrix-assisted laser desorption ionization time of flight-based mass spectrometry. Talanta, 2013, 116, 100-107.	2.9	3
61	The Evolving Role of Information Technology in Haemovigilance Systems. Journal of Healthcare Engineering, 2018, 2018, 1-8.	1.1	3
62	Application of agent-based modelling to assess single-molecule transport across the cell envelope of E. coli. Computers in Biology and Medicine, 2019, 107, 218-226.	3.9	3
63	Computational approach to the systematic prediction of glycolytic abilities: looking into human microbiota. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 18, 1-1.	1.9	3
64	In silico and functional analyses of immunomodulatory peptides encrypted in the human gut metaproteome. Journal of Functional Foods, 2020, 70, 103969.	1.6	3
65	Computational resources and strategies to assess single-molecule dynamics of the translation process in <i>S. cerevisiae</i>). Briefings in Bioinformatics, 2021, 22, 219-231.	3.2	3
66	A Rational Framework for Production Decision Making in Blood Establishments. Journal of Integrative Bioinformatics, 2012, 9, 69-79.	1.0	2
67	Bringing Named Entity Recognition on Drupal Content Management System. Advances in Intelligent Systems and Computing, 2014, , 261-268.	0.5	2
68	A harmonised vocabulary for communicating and interchanging Biofilms experimental results. Journal of Integrative Bioinformatics, 2014, 11, 32-47.	1.0	2
69	High performance computing for three-dimensional agent-based molecular models. Journal of Molecular Graphics and Modelling, 2016, 68, 68-77.	1.3	2
70	Computational prediction of the bioactivity potential of proteomes based on expert knowledge. Journal of Biomedical Informatics, 2019, 91, 103121.	2.5	2
71	Marky: A Lightweight Web Tracking Tool for Document Annotation. Advances in Intelligent Systems and Computing, 2014, , 269-276.	0.5	2
72	BEW: Bioinformatics Workbench for Analysis of Biofilms Experimental Data. Advances in Intelligent Systems and Computing, 2014, , 49-56.	0.5	2

#	Article	IF	CITATIONS
73	Data Integration Issues in the Reconstruction of the Genome-Scale Metabolic Model of Zymomonas Mobillis. Advances in Soft Computing, 2009, , 92-101.	0.4	2
74	MorphoCol: A Powerful Tool for the Clinical Profiling of Pathogenic Bacteria. Advances in Intelligent and Soft Computing, 2012, , 181-188.	0.2	2
75	Applying Clickstream Data Mining to Real-Time Web Crawler Detection and Containment Using ClickTips Platform. Studies in Classification, Data Analysis, and Knowledge Organization, 2007, , 351-358.	0.1	2
76	The Activity of Bioinformatics Developers and Users in Stack Overflow. Advances in Intelligent Systems and Computing, 2021, , 23-31.	0.5	2
77	Boosting biomedical document classification through the use of domain entity recognizers and semantic ontologies for document representation: The case of gluten bibliome. Neurocomputing, 2022, 484, 223-237.	3.5	2
78	A study of the short and long-term regulation of E. coli metabolic pathways. Journal of Integrative Bioinformatics, 2011, 8, 183.	1.0	2
79	Computational approaches to standard-compliant biofilm data for reliable analysis and integration. Journal of Integrative Bioinformatics, 2012, 9, 203.	1.0	2
80	Application of classification-tree models to characterize the mycobiota of grapes on the basis of origin. Revista Iberoamericana De Micologia, 2006, 23, 171-175.	0.4	1
81	A framework for the development of Biomedical Text Mining software tools. , 2008, , .		1
82	Pathogenicity phenomena in three model systems: from network mining to emerging system-level properties. Briefings in Bioinformatics, 2015, 16, 169-182.	3.2	1
83	P4P: a peptidome-based strain-level genome comparison web tool. Nucleic Acids Research, 2017, 45, W265-W269.	6.5	1
84	Collaborative relation annotation and quality analysis in Markyt environment. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	1.4	1
85	HaemoKBS: A knowledge-based system for real-time, continuous categorisation of adverse reactions in blood recipients. Neurocomputing, 2021, 423, 756-767.	3.5	1
86	The Complexity of Promoter Regions Based on a Vector Topological Entropy. Current Bioinformatics, 2017, 12, .	0.7	1
87	Biomedical Text Mining Applied to Document Retrieval and Semantic Indexing. Lecture Notes in Computer Science, 2009, , 954-963.	1.0	1
88	A rational framework for production decision making in blood establishments. Journal of Integrative Bioinformatics, 2012, 9, 204.	1.0	1
89	Use Social Media Knowledge for Exploring the Portuguese Wine Industry: Following Talks and Perceptions?. Scientific Programming, 2022, 2022, 1-17.	0.5	1
90	Mortality risk classification for decision support in neonatal critical care., 0,,.		0

#	Article	IF	CITATIONS
91	A framework for the integrated analysis of metabolic and regulatory networks. , 2008, , .		o
92	Bringing Text Miners and Biologists Closer Together. Nature Precedings, 2009, , .	0.1	0
93	Computational Resources and Strategies to Construct Single-Molecule Models of FISH. Methods in Molecular Biology, 2021, 2246, 317-330.	0.4	O
94	Interpreting the Regulatory Interplay in E. coli Metabolic Pathways. Advances in Intelligent and Soft Computing, 2011, , 303-312.	0.2	0
95	A Systematic Approach to the Interrogation and Sharing of Standardised Biofilm Signatures. Advances in Intelligent and Soft Computing, 2012, , 113-120.	0.2	O
96	Evaluating Web Site Structure Based on Navigation Profiles and Site Topology. Advances in Intelligent Systems and Computing, 2013, , 305-311.	0.5	0
97	Designing an Ontology Tool for the Unification of Biofilms Data. Advances in Intelligent Systems and Computing, 2014, , 41-48.	0.5	O
98	A Novel Search Engine Supporting Specific Drug Queries and Literature Management. Advances in Intelligent Systems and Computing, 2015, , 99-106.	0.5	0
99	Application of Agent-Based Modelling to Simulate Ribosome Translation. Lecture Notes in Computer Science, 2020, , 200-211.	1.0	O
100	A Health-Related Study from Food Online Reviews. The Case of Gluten-Free Foods. Advances in Intelligent Systems and Computing, 2021, , 12-22.	0.5	0
101	An harmonised vocabulary for communicating and interchanging biofilms experimental results. Journal of Integrative Bioinformatics, 2014, 11, 249.	1.0	0