Marcello Leopoldo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1629523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Serotonin 5-HT7 receptor agents: Structure-activity relationships and potential therapeutic applications in central nervous system disorders. , 2011, 129, 120-148.		168
2	International Union of Basic and Clinical Pharmacology. CX. Classification of Receptors for 5-hydroxytryptamine; Pharmacology and Function. Pharmacological Reviews, 2021, 73, 310-520.	7.1	127
3	Activation of 5-HT7 Serotonin Receptors Reverses Metabotropic Glutamate Receptor-Mediated Synaptic Plasticity in Wild-Type and Fmr1 Knockout Mice, a Model of Fragile X Syndrome. Biological Psychiatry, 2012, 72, 924-933.	0.7	109
4	Interplay between Serotonin 5â€ <scp>HT</scp> _{1A} and 5â€ <scp>HT</scp> ₇ Receptors in Depressive Disorders. CNS Neuroscience and Therapeutics, 2014, 20, 582-590.	1.9	102
5	High Affinity and Selectivity on 5-HT1A Receptor of 1-Aryl-4-[(1-tetralin)alkyl]piperazines. 2. Journal of Medicinal Chemistry, 1995, 38, 942-949.	2.9	92
6	5-HT1A Receptor, an Old Target for New Therapeutic Agents. Current Topics in Medicinal Chemistry, 2008, 8, 1024-1034.	1.0	83
7	LP-211 is a brain penetrant selective agonist for the serotonin 5-HT7 receptor. Neuroscience Letters, 2010, 481, 12-16.	1.0	73
8	Developments in fluorescent probes for receptor research. Drug Discovery Today, 2009, 14, 706-712.	3.2	72
9	Structureâ^'Affinity Relationship Study onN-[4-(4-Ary piperazin-1-yl)butyl]arylcarboxamides as Potent and Selective Dopamine D3Receptor Ligands. Journal of Medicinal Chemistry, 2002, 45, 5727-5735.	2.9	71
10	Structural Modifications of <i>N</i> -(1,2,3,4-Tetrahydronaphthalen-1-yl)-4-Aryl-1-piperazinehexanamides: Influence on Lipophilicity and 5-HT ₇ Receptor Activity. Part III. Journal of Medicinal Chemistry, 2008, 51, 5813-5822.	2.9	67
11	Small and Innovative Molecules as New Strategy to Revert MDR. Frontiers in Oncology, 2014, 4, 2.	1.3	66
12	Serotonin 5â€ <scp>HT</scp> 7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons. Journal of Neurochemistry, 2017, 141, 647-661.	2.1	66
13	Pharmacological Stimulation of the Brain Serotonin Receptor 7 as a Novel Therapeutic Approach for Rett Syndrome. Neuropsychopharmacology, 2014, 39, 2506-2518.	2.8	64
14	Structureâ^'Affinity Relationship Study onN-(1,2,3,4-Tetrahydronaphthalen-1-yl)-4-Aryl-1-Piperazinealkylamides, a New Class of 5-Hydroxytryptamine7Receptor Agents. Journal of Medicinal Chemistry, 2004, 47, 6616-6624.	2.9	62
15	The serotonin receptor 7 promotes neurite outgrowth via ERK and Cdk5 signaling pathways. Neuropharmacology, 2013, 67, 155-167.	2.0	62
16	ABC transporters in CSCs membranes as a novel target for treating tumor relapse. Frontiers in Pharmacology, 2014, 5, 163.	1.6	58
17	Modulatory effects of two novel agonists for serotonin receptor 7 on emotion, motivation and circadian rhythm profiles in mice. Neuropharmacology, 2012, 62, 833-842.	2.0	56
18	Synthesis and Structureâ^'Affinity Relationships of 1-[ω-(4-Aryl-1-piperazinyl)alkyl]-1-aryl Ketones as 5-HT7 Receptor Ligands. Journal of Medicinal Chemistry, 2003, 46, 646-649.	2.9	53

#	Article	IF	CITATIONS
19	Serotonin7 Receptors (5-HT7Rs)and their Ligands. Current Medicinal Chemistry, 2004, 11, 629-661.	1.2	52
20	A multireceptorial binding reinvestigation on an extended class of σ ligands: N-[ω-(indan-1-yl and) Tj ETQq0 (Bioorganic and Medicinal Chemistry, 2001, 9, 1325-1335.) 0 rgBT /O 1.4	verlock 10 Tf 5 51
21	Structureâ^'Activity Relationship Study on <i>N</i> -(1,2,3,4-Tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamides, a Class of 5-HT ₇ Receptor Agents. 2. Journal of Medicinal Chemistry, 2007, 50, 4214-4221.	2.9	51
22	The serotonin 5-HT7 receptor agonist LP-44 microinjected into the dorsal raphe nucleus suppresses REM sleep in the rat. Behavioural Brain Research, 2008, 191, 184-189.	1.2	49
23	An updated patent review on P-glycoprotein inhibitors (2011-2018). Expert Opinion on Therapeutic Patents, 2019, 29, 455-461.	2.4	49
24	Novel agonists for serotonin 5-HT7 receptors reverse metabotropic glutamate receptor-mediated long-term depression in the hippocampus of wild-type and Fmr1 KO mice, a model of Fragile X Syndrome. Frontiers in Behavioral Neuroscience, 2015, 9, 65.	1.0	48
25	Selective agonists for serotonin 7 (5-HT7) receptor and their applications in preclinical models: an overview. Reviews in the Neurosciences, 2014, 25, 401-15.	1.4	46
26	The 5-HT7 receptor triggers cerebellar long-term synaptic depression via PKC-MAPK. Neuropharmacology, 2016, 101, 426-438.	2.0	46
27	Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions. Journal of Medicinal Chemistry, 2017, 60, 9114-9141.	2.9	46
28	Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome. Frontiers in Behavioral Neuroscience, 2015, 9, 86.	1.0	44
29	High-Affinity Dopamine D ₃ Receptor Ligands as Potential Probes for Receptor Visualization. Journal of Medicinal Chemistry, 2007, 50, 5043-5047.	2.9	43
30	Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics. Frontiers in Behavioral Neuroscience, 2015, 9, 62.	1.0	43
31	Stimulation of the brain serotonin receptor 7 rescues mitochondrial dysfunction in female mice from two models of Rett syndrome. Neuropharmacology, 2017, 121, 79-88.	2.0	43
32	Novel 4-(4-Aryl)cyclohexyl-1-(2-pyridyl)piperazines as Δ ₈ â^Δ ₇ Sterol Isomerase (Emopamil Binding Protein) Selective Ligands with Antiproliferative Activity. Journal of Medicinal Chemistry, 2008, 51, 7523-7531.	2.9	42
33	The brain-penetrant 5-HT 7 receptor agonist LP-211 reduces the sensory and affective components of neuropathic pain. Neurobiology of Disease, 2017, 106, 214-221.	2.1	40
34	Structure–Activity Relationships and Therapeutic Potentials of 5-HT ₇ Receptor Ligands: An Update. Journal of Medicinal Chemistry, 2018, 61, 8475-8503.	2.9	39
35	Determination of 1-aryl-4-propylpiperazine pKa values: The substituent on aryl modulates basicity. Bioorganic and Medicinal Chemistry, 2009, 17, 1339-1344.	1.4	36
36	The therapeutic potential of 5-HT1A receptors: a patent review. Expert Opinion on Therapeutic Patents, 2012, 22, 887-902.	2.4	36

#	Article	IF	CITATIONS
37	Novel ureidopropanamide based N-formyl peptide receptor 2 (FPR2) agonists with potential application for central nervous system disorders characterized by neuroinflammation. European Journal of Medicinal Chemistry, 2017, 141, 703-720.	2.6	36
38	Activatable Fluorescent Probes: A New Concept in Optical Molecular Imaging. Current Medicinal Chemistry, 2012, 19, 4731-4741.	1.2	35
39	Investigations on the 1-(2-Biphenyl)piperazine Motif: Identification of New Potent and Selective Ligands for the Serotonin7(5-HT7) Receptor with Agonist or Antagonist Action in Vitro or ex Vivo. Journal of Medicinal Chemistry, 2012, 55, 6375-6380.	2.9	35
40	Persistent modification of forebrain networks and metabolism in rats following adolescent exposure to a 5-HT7 receptor agonist. Psychopharmacology, 2015, 232, 75-89.	1.5	33
41	Design, Synthesis, and Binding Affinities of Potential Positron Emission Tomography (PET) Ligands for Visualization of Brain Dopamine D3Receptors. Journal of Medicinal Chemistry, 2006, 49, 358-365.	2.9	32
42	Activation of Serotonin 5-HT7 Receptors Modulates Hippocampal Synaptic Plasticity by Stimulation of Adenylate Cyclases and Rescues Learning and Behavior in a Mouse Model of Fragile X Syndrome. Frontiers in Molecular Neuroscience, 2018, 11, 353.	1.4	32
43	1-Aryl-4-[(1-tetralinyl)alkyl]piperazines:  Alkylamido and Alkylamino Derivatives. Synthesis, 5-HT1A Receptor Affinity, and Selectivity. 3. Journal of Medicinal Chemistry, 1996, 39, 3195-3202.	2.9	31
44	Studies on 1-arylpiperazine derivatives with affinity for rat 5-HT7 and 5-HT1A receptors. Journal of Pharmacy and Pharmacology, 2010, 56, 247-255.	1.2	31
45	First Structureâ^'Activity Relationship Study on Dopamine D3 Receptor Agents with N-[4-(4-Arylpiperazin-1-yl)butyl]arylcarboxamide Structure. Journal of Medicinal Chemistry, 2005, 48, 7919-7922.	2.9	30
46	5-HT7 receptor activation: procognitive and antiamnesic effects. Psychopharmacology, 2015, 232, 595-603.	1.5	29
47	Formyl peptide receptor 2, as an important target for ligands triggering the inflammatory response regulation: a link to brain pathology. Pharmacological Reports, 2021, 73, 1004-1019.	1.5	29
48	A Structureâ^'Affinity Relationship Study on Derivatives ofN-[2-[4-(4-Chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide, a High-Affinity and Selective D4Receptor Ligand. Journal of Medicinal Chemistry, 2000, 43, 270-277.	2.9	28
49	trans-4-[4-(Methoxyphenyl)cyclohexyl]-1-arylpiperazines:  A New Class of Potent and Selective 5-HT1A Receptor Ligands as Conformationally Constrained Analogues of 4-[3-(5-Methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]-1- arylpiperazines. Journal of Medicinal Chemistry, 2001, 44, 4431-4442	2.9	26
50	3-(1H-indol-3-yl)-2-[3-(4-nitrophenyl)ureido]propanamide enantiomers with human formyl-peptide receptor agonist activity: Molecular modeling of chiral recognition by FPR2. Biochemical Pharmacology, 2013, 85, 404-416.	2.0	26
51	Naphthalenyl derivatives for hitting P-gp/MRP1/BCRP transporters. Bioorganic and Medicinal Chemistry, 2013, 21, 1324-1332.	1.4	26
52	Synthesis, radiolabeling and inÂvivo evaluation of [11C](R)-1-[4-[2-(4-methoxyphenyl)phenyl]piperazin-1-yl]-3-(2-pyrazinyloxy)-2-propanol, a potential PET radioligand for the 5-HT7 receptor. European Journal of Medicinal Chemistry, 2014, 79, 152-163.	2.6	26
53	Rescue of prepulse inhibition deficit and brain mitochondrial dysfunction by pharmacological stimulation of the central serotonin receptor 7 in a mouse model of CDKL5 Deficiency Disorder. Neuropharmacology, 2019, 144, 104-114.	2.0	25
54	Carbon-11 pb-12: an attempt to visualize the dopamine d4 receptor in the primate brain with positron emission tomography. Nuclear Medicine and Biology, 2000, 27, 707-714.	0.3	24

#	Article	IF	CITATIONS
55	Structureâ^'Activity Relationship Studies on the 5-HT1AReceptor Affinity of 1-Phenyl-4-[ï‰-(α- or) Tj ETQq1 1 0.	784314	rgBT ₂ /Overloc
56	The microRNA-29a Modulates Serotonin 5-HT7 Receptor Expression and Its Effects on Hippocampal Neuronal Morphology. Molecular Neurobiology, 2019, 56, 8617-8627.	1.9	23
57	N-[2-[4-(4-Chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide:  A Potent and Selective Dopamine D4 Ligand. Journal of Medicinal Chemistry, 1998, 41, 4903-4909.	2.9	22
58	Synthesis and Characterization of Environment-Sensitive Fluorescent Ligands for Human 5-HT1AReceptors with 1-Arylpiperazine Structureâ€. Journal of Medicinal Chemistry, 2009, 52, 7892-7896.	2.9	22
59	Design, synthesis, radiolabeling and in vivo evaluation of potential positron emission tomography (PET) radioligands for brain imaging of the 5-HT7 receptor. Bioorganic and Medicinal Chemistry, 2014, 22, 1736-1750.	1.4	22
60	Novel ⁶⁴ Cu Labeled RGD ₂ -BBN Heterotrimers for PET Imaging of Prostate Cancer. Bioconjugate Chemistry, 2018, 29, 1595-1604.	1.8	22
61	1-Aryl-4-[(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)alkyl]piperazines and Their Analogues:  Influence of the Stereochemistry of the Tetrahydronaphthalen-1-yl Nucleus on 5-HT1A Receptor Affinity and Selectivity versus α1 and D2 Receptors. 5. Journal of Medicinal Chemistry, 1999, 42, 490-496.	2.9	21
62	ML-18 is a non-peptide bombesin receptor subtype-3 antagonist which inhibits lung cancer growth. Peptides, 2015, 64, 55-61.	1.2	21
63	The Contribution of Formyl Peptide Receptor Dysfunction to the Course of Neuroinflammation: A Potential Role in the Brain Pathology. Current Neuropharmacology, 2020, 18, 229-249.	1.4	21
64	Prepuberal Stimulation of 5-HT7-R by LP-211 in a Rat Model of Hyper-Activity and Attention-Deficit: Permanent Effects on Attention, Brain Amino Acids and Synaptic Markers in the Fronto-Striatal Interface. PLoS ONE, 2014, 9, e83003.	1.1	20
65	Systemic administration and local microinjection into the central nervous system of the 5-HT7 receptor agonist LP-211 modify the sleep-wake cycle in the rat. Behavioural Brain Research, 2014, 259, 321-329.	1.2	19
66	Emotional and risk seeking behavior after prepuberal subchronic or adult acute stimulation of 5-HT7-Rs in naples high excitability rats. Synapse, 2014, 68, 159-167.	0.6	18
67	Modulatory effects following subchronic stimulation of brain 5-HT7-R system in mice and rats. Reviews in the Neurosciences, 2014, 25, 383-400.	1.4	18
68	11C-Labeling ofN-[4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butyl]arylcarboxamide Derivatives and Evaluation as Potential Radioligands for PET Imaging of Dopamine D3Receptors. Journal of Medicinal Chemistry, 2005, 48, 7018-7023.	2.9	16
69	Arylpiperazine agonists of the serotonin 5-HT1A receptor preferentially activate cAMP signaling versus recruitment of β-arrestin-2. Bioorganic and Medicinal Chemistry, 2015, 23, 4824-4830.	1.4	16
70	Oxygen isosteric derivatives of 3-(3-hydroxyphenyl)-N-n-propylpiperidine. Journal of Medicinal Chemistry, 1992, 35, 3045-3049.	2.9	15
71	1-Substituted-4-[3-(1,2,3,4-tetrahydro-5- or 7-methoxynaphthalen-1-yl)propyl]piperazines: influence of the N -1 piperazine substituent on 5-HT 1A receptor affinity and selectivity versus D 2 and α 1 receptors. Part 6. Bioorganic and Medicinal Chemistry, 2000, 8, 873-881.	1.4	15
72	Identification of a red-emitting fluorescent ligand for in vitro visualization of human serotonin 5-HT1A receptors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6628-6632.	1.0	15

#	Article	IF	CITATIONS
73	EGFR tyrosine kinase inhibitors and multidrug resistance: perspectives. Frontiers in Bioscience - Landmark, 2011, 16, 1811.	3.0	15
74	A Benzopyrane Derivative as a Pâ€Clycoprotein Stimulator: A Potential Agent to Decrease βâ€Amyloid Accumulation in Alzheimer's Disease. ChemMedChem, 2012, 7, 391-395.	1.6	14
75	Towards metabolically stable 5-HT7 receptor ligands: a study on 1-arylpiperazine derivatives and related isosters. Experimental Brain Research, 2013, 230, 569-582.	0.7	14
76	Structural modifications of the serotonin 5-HT7 receptor agonist N-(4-cyanophenylmethyl)-4-(2-biphenyl)-1-piperazinehexanamide (LP-211) to improve inÂvitro microsomal stability: A case study. European Journal of Medicinal Chemistry, 2016, 120, 363-379.	2.6	14
77	Time-Dependent Protective and Pro-Resolving Effects of FPR2 Agonists on Lipopolysaccharide-Exposed Microglia Cells Involve Inhibition of NF-κB and MAPKs Pathways. Cells, 2021, 10, 2373.	1.8	14
78	Selective Agents for Serotonin2C (5-HT2C) Receptor. Current Topics in Medicinal Chemistry, 2006, 6, 1927-1970.	1.0	13
79	5-HT7receptor modulators: a medicinal chemistry survey of recent patent literature (2004 – 2009). Expert Opinion on Therapeutic Patents, 2010, 20, 739-754.	2.4	13
80	LPâ€211, a selective 5â€HT ₇ receptor agonist, increases noveltyâ€preference and promotes riskâ€prone behavior in rats. Synapse, 2017, 71, e21995.	0.6	13
81	Multi-Target Directed Ligands (MTDLs) Binding the σ1 Receptor as Promising Therapeutics: State of the Art and Perspectives. International Journal of Molecular Sciences, 2021, 22, 6359.	1.8	13
82	The N-Formyl Peptide Receptor 2 (FPR2) Agonist MR-39 Exhibits Anti-Inflammatory Activity in LPS-Stimulated Organotypic Hippocampal Cultures. Cells, 2021, 10, 1524.	1.8	13
83	Design and synthesis of long-chain arylpiperazines with mixed affinity for serotonin transporter (SERT) and 5-HT1A receptor. Journal of Pharmacy and Pharmacology, 2010, 57, 1319-1327.	1.2	12
84	Design, Synthesis, Radiolabeling, and in Vivo Evaluation of Carbon-11 LabeledN-[2-[4-(3-Cyanopyridin-2-yl)piperazin-1-yl]ethyl]-3-methoxybenzamide, a Potential Positron Emission Tomography Tracer for the Dopamine D4Receptors. Journal of Medicinal Chemistry, 2010, 53, 7344-7355.	2.9	12
85	Microinjection of the 5-HT7 receptor antagonist SB-269970 into the rat brainstem and basal forebrain: Site-dependent effects on REM sleep. Pharmacology Biochemistry and Behavior, 2012, 102, 373-380.	1.3	12
86	Novel 3-(1H-indol-3-yl)-2-[3-(4-methoxyphenyl)ureido]propanamides as selective agonists of human formyl-peptide receptor 2. Bioorganic and Medicinal Chemistry, 2015, 23, 3913-3924.	1.4	12
87	Design, synthesis, and binding affinities of potential positron emission tomography (PET) ligands with optimal lipophilicity for brain imaging of the dopamine D3 receptor. Part II. Bioorganic and Medicinal Chemistry, 2009, 17, 758-766.	1.4	11
88	Synthesis and binding profile of constrained analogues of N-[4-(4-arylpiperazin-1-yl)butyl]-3-methoxybenzamides, a class of potent dopamine D3 receptor ligands. Journal of Pharmacy and Pharmacology, 2010, 58, 209-218.	1.2	11
89	Activity–lipophilicity relationship studies on P-gp ligands designed as simplified tariquidar bulky fragments. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3728-3731.	1.0	11
90	Functional N â€Formyl Peptide Receptorâ€2 (FPR2) Antagonists Based on the Ureidopropanamide Scaffold Have Potential To Protect Against Inflammationâ€Associated Oxidative Stress. ChemMedChem, 2017, 12, 1839-1847.	1.6	11

#	Article	IF	CITATIONS
91	N-[ω-[4-(2-Methoxyphenyl)-1-piperazinyl]alkyl]-2-quinolinamines as High-Affinity Fluorescent 5-HT1A Receptor Ligands. Journal of Medicinal Chemistry, 2008, 51, 1492-1495.	2.9	10
92	Increase of Capsaicin-Induced Trigeminal Fos-Like Immunoreactivity by 5-HT7 Receptors. Headache, 2011, 51, 1511-1519.	1.8	10
93	Knowledge-Based Design of Long-Chain Arylpiperazine Derivatives Targeting Multiple Serotonin Receptors as Potential Candidates for Treatment of Autism Spectrum Disorder. ACS Chemical Neuroscience, 2021, 12, 1313-1327.	1.7	10
94	The N-Formyl Peptide Receptor 2 (FPR2) Agonist MR-39 Improves Ex Vivo and In Vivo Amyloid Beta (1–42)-Induced Neuroinflammation in Mouse Models of Alzheimer's Disease. Molecular Neurobiology, 2021, 58, 6203-6221.	1.9	10
95	G-Protein Coupled Receptors Involved in the Resolution of Inflammation: Ligands and Therapeutic Perspectives. Mini-Reviews in Medicinal Chemistry, 2021, 20, 2090-2103.	1.1	10
96	Design and Synthesis of New Selective P-gp Substrates and Inhibitors. Current Pharmaceutical Design, 2016, 22, 5774-5778.	0.9	10
97	Biomarkers for the early diagnosis of Alzheimer's disease: The challenge of XXI century. Advances in Alzheimer's Disease, 2013, 02, 13-30.	0.3	10
98	1-(2-METHOXYPHENYL)-4-ALKYLPIPERAZINES: EFFECT OF THE N-4 SUBSTITUENT ON THE AFFINITY AND SELECTIVITY FOR DOPAMINE D4 RECEPTOR. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 1327-1330.	1.0	9
99	Bivalent ligand approach on 4-[2-(3-methoxyphenyl)ethyl]-1-(2-methoxyphenyl)piperazine: Synthesis and binding affinities for 5-HT7 and 5-HT1A receptors. Bioorganic and Medicinal Chemistry, 2007, 15, 5316-5321.	1.4	9
100	Stimulation of 5-HT7 receptor during adolescence determines its persistent upregulation in adult rat forebrain areas. Synapse, 2015, 69, 533-542.	0.6	9
101	Activation of 5â€ <scp>HT</scp> 7 receptor by administration of its selective agonist, <scp>LP</scp> â€211, modifies explorative uriosity behavior in rats in two paradigms which differ in visuospatial parameters. CNS Neuroscience and Therapeutics, 2018, 24, 712-720.	1.9	9
102	Privileged scaffold-based design to identify a novel drug-like 5-HT7 receptor-preferring agonist to target Fragile X syndrome. European Journal of Medicinal Chemistry, 2020, 199, 112395.	2.6	9
103	Selective 5-HT7 receptor agonists LP 44 and LP 211 elicit an analgesic effect on formalin-induced orofacial pain in mice. Journal of Applied Oral Science, 2016, 24, 218-222.	0.7	8
104	Structural Determinants in the Binding of BB2 Receptor Ligands: In Silico, X-Ray and NMR Studies in PD176252 Analogues. Current Topics in Medicinal Chemistry, 2017, 17, 1599-1610.	1.0	8
105	Behavioral, Anti-Inflammatory, and Neuroprotective Effects of a Novel FPR2 Agonist in Two Mouse Models of Autism. Pharmaceuticals, 2022, 15, 161.	1.7	8
106	Differential responses to acute administration of a new 5-HT7-R agonist as a function of adolescent pre-treatment: phMRI and immuno-histochemical study. Frontiers in Behavioral Neuroscience, 2014, 8, 427.	1.0	7
107	Structural insights into serotonin receptor ligands polypharmacology. European Journal of Medicinal Chemistry, 2018, 151, 797-814.	2.6	7
108	Design, Synthesis, Biological Evaluation, and Computational Studies of Novel Ureidopropanamides as Formyl Peptide Receptor 2 (FPR2) Agonists to Target the Resolution of Inflammation in Central Nervous System Disorders. Journal of Medicinal Chemistry, 2022, 65, 5004-5028.	2.9	7

#	Article	IF	CITATIONS
109	Comparative evaluation of two dye probes in the rat everted gut sac model for unambiguous classification of P-gp substrate and inhibitor. Journal of Pharmacological and Toxicological Methods, 2013, 67, 5-8.	0.3	6
110	Novel highly potent serotonin 5-HT7 receptor ligands: Structural modifications to improve pharmacokinetic properties. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6083-6086.	1.0	6
111	Potent and selective tariquidar bioisosters as potential PET radiotracers for imaging P-gp. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1370-1374.	1.0	6
112	The arylpiperazine derivatives N â€(4â€cyanophenylmethyl)â€4â€(2â€diphenyl)â€1â€piperazinehexanamide and â€benzylâ€4â€(2â€diphenyl)â€1â€piperazinehexanamide exert a longâ€lasting inhibition of human serotonin 5â receptor binding and cAMP signaling. Pharmacology Research and Perspectives, 2013, 1, e00013.	N €H111.7	6
113	PET Radiotracers for Imaging Pâ€glycoprotein: The Challenge for Early Diagnosis in AD. ChemMedChem, 2014, 9, 38-42.	1.6	6
114	High-affinity sigma-1 (σ ₁) receptor ligands based on the σ ₁ antagonist PB212. Future Medicinal Chemistry, 2019, 11, 2547-2562.	1.1	6
115	Why PB28 Could Be a Covid 2019 Game Changer?. ACS Medicinal Chemistry Letters, 2020, 11, 2048-2050.	1.3	6
116	Activation of 5-HT1A and 5-HT7 receptors enhanced a positively reinforced long-term memory. Behavioural Brain Research, 2021, 397, 112932.	1.2	6
117	Serotonin 5â€HT7 receptors require cyclinâ€dependent kinase 5 to rescue hippocampal synaptic plasticity in a mouse model of Fragile X Syndrome. European Journal of Neuroscience, 2021, 54, 4124-4132.	1.2	6
118	Design, Synthesis, Lipophilic Properties, and Binding Affinities of Potential Ligands in Positron Emission Tomography (PET) for Visualization of Brain Dopamine D ₄ Receptors. Chemistry and Biodiversity, 2014, 11, 299-310.	1.0	5
119	GR-127935-sensitive Mechanism Mediating Hypotension in Anesthetized Rats. Journal of Cardiovascular Pharmacology, 2015, 65, 335-341.	0.8	5
120	<i>In Vitro</i> and <i>In Vivo</i> Evaluation of <i>N</i> â€{2â€{4â€(3â€Cyanopyridinâ€2â€yl)piperazinâ€1â€yl]ethyl}â€3â€{ ¹¹ C]methoxybenzÂa Emission Tomography (PET) Radioligand for Dopamine D ₄ Receptors, in Rodents. Chemistry and Biodiversity. 2014. 11, 1298-1308.	mide, a Po 1.0	ositron 4
121	Radiosynthesis and <i>inÂvivo</i> Evaluation of Carbonâ€11 (2 <i>S</i>)â€3â€{1 <i>H</i> â€Indolâ€3â€yl)â€2â€{[(4â€methoxyphenyl)carbamoyl]amino}â€ <i>N</i> â€{[1â€(An Attempt to Visualize Brain Formyl Peptide Receptors in Mouse Models of Neuroinflammation. Chemistry and Biodiversity. 2016. 13, 875-883	5â€metho 1.0	oxypyridinâ€
122	Structure-activity relationship study towards non-peptidic positron emission tomography (PET) radiotracer for gastrin releasing peptide receptors: Development of [18F] (S)-3-(1H-indol-3-yl)-N-[1-[5-(2-fluoroethoxy)pyridin-2-yl]cyclohexylmethyl]-2-methyl-2-[3-(4-nitrophenyl)ureido]pu Bioorganic and Medicinal Chemistry, 2017, 25, 277-292.	opionami	ide.
123	AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists. Frontiers in Endocrinology, 2017, 8, 176.	1.5	4
124	Mitochondrial Membranes of Human SH-SY5Y Neuroblastoma Cells Express Serotonin 5-HT7 Receptor. International Journal of Molecular Sciences, 2020, 21, 9629.	1.8	4
125	Determination of dopamine D4 receptor density in rat striatum using PB12 as a probe. European Journal of Pharmacology, 2001, 427, 1-5.	1.7	3
126	Functionalized Coumarine Fragment to Obtain Fluorescent and Selective Pâ€Glycoprotein Ligands. Archiv Der Pharmazie, 2016, 349, 161-167.	2.1	3

#	ARTICLE	IF	CITATIONS
127	Potentiation of capsaicin-induced neurogenic inflammation by 5-HT7 receptors in the rat hind paw: Involvement of calcitonin gen-related peptide. Peptides, 2018, 105, 1-6.	1.2	3
128	Prior Activation of 5-HT7 Receptors Modulates the Conditioned Place Preference With Methylphenidate. Frontiers in Behavioral Neuroscience, 2019, 13, 208.	1.0	3
129	Aurantiamide-related dipeptide derivatives are formyl peptide receptor 1 antagonists. MedChemComm, 2019, 10, 2078-2088.	3.5	3
130	Low Basicity as a Characteristic for Atypical Ligands of Serotonin Receptor 5-HT2. International Journal of Molecular Sciences, 2021, 22, 1035.	1.8	3
131	In Vitro and In Silico Analysis of the Residence Time of Serotonin 5-HT ₇ Receptor Ligands with Arylpiperazine Structure: A Structure–Kinetics Relationship Study. ACS Chemical Neuroscience, 2022, 13, 497-509.	1.7	3
132	5-HT7 Receptors Regulate Excitatory-Inhibitory Balance in Mouse Spinal Cord Dorsal Horn. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	3
133	Editorial [Hot Topic "Fluorescent Probes: From Bench to Bedside―(Guest Editors: Enza Lacivita &) Tj ETQq1	1	.4 _[gBT /Over
134	Stimulation of the Serotonin Receptor 7 Restores Brain Histone H3 Acetylation and MeCP2 Corepressor Protein Levels in a Female Mouse Model of Rett Syndrome. Journal of Neuropathology and Experimental Neurology, 2021, 80, 265-273.	0.9	1
135	Design and Synthesis of Arylpiperazine Serotonergic/Dopaminergic Ligands with Neuroprotective Properties. Molecules, 2022, 27, 1297.	1.7	1
136	Design, Synthesis, and Characterization of a Novel Fluoroprobe for Live Human Islet Cell Imaging of Serotonin 5â€HT _{1A} Receptor. ChemMedChem, 2022, , .	1.6	1
137	LC–MS/MS Analysis on Infusion Bags and Filled Syringes of Decitabine: New Data on Physicochemical Stability of an Unstable Molecule. ACS Omega, 0, , .	1.6	1
138	Editorial [Hot Topic: Serotonin Receptors as Targets in Drug Discovery and Medicinal Chemistry (Guest Editor: Dr. Marcello Leopoldo)]. Current Topics in Medicinal Chemistry, 2006, 6, 1907-1907.	1.0	0
139	The Need To Improve Reporting of the Pharmacological Action of New Molecules. ACS Chemical Neuroscience, 2022, , .	1.7	0