
Hunter B Fraser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1629309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolutionary Rate in the Protein Interaction Network. Science, 2002, 296, 750-752.	6.0	798
2	Factors underlying variable DNA methylation in a human community cohort. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17253-17260.	3.3	414
3	Protein dispensability and rate of evolution. Nature, 2001, 411, 1046-1049.	13.7	373
4	Noise Minimization in Eukaryotic Gene Expression. PLoS Biology, 2004, 2, e137.	2.6	370
5	N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nature Cell Biology, 2001, 3, 897-904.	4.6	308
6	Functional genomic analysis of the rates of protein evolution. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5483-5488.	3.3	255
7	Population-specificity of human DNA methylation. Genome Biology, 2012, 13, R8.	13.9	247
8	Coevolution of gene expression among interacting proteins. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9033-9038.	3.3	221
9	Genetic conflict reflected in tissue-specific maps of genomic imprinting in human and mouse. Nature Genetics, 2015, 47, 544-549.	9.4	221
10	Gene expression drives local adaptation in humans. Genome Research, 2013, 23, 1089-1096.	2.4	217
11	Conservation and Evolution of Cis-Regulatory Systems in Ascomycete Fungi. PLoS Biology, 2004, 2, e398.	2.6	207
12	Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3264-3269.	3.3	201
13	Modularity and evolutionary constraint on proteins. Nature Genetics, 2005, 37, 351-352.	9.4	174
14	Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing. Cell, 2018, 175, 544-557.e16.	13.5	166
15	Evidence for widespread adaptive evolution of gene expression in budding yeast. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2977-2982.	3.3	161
16	Aging and Gene Expression in the Primate Brain. PLoS Biology, 2005, 3, e274.	2.6	160
17	A simple dependence between protein evolution rate and the number of protein-protein interactions. BMC Evolutionary Biology, 2003, 3, 11.	3.2	152
18	Genetic variation in MHC proteins is associated with T cell receptor expression biases. Nature Genetics, 2016, 48, 995-1002.	9.4	151

Hunter B Fraser

#	Article	IF	CITATIONS
19	Accounting for biases in riboprofiling data indicates a major role for proline in stalling translation. Genome Research, 2014, 24, 2011-2021.	2.4	142
20	Extensive conservation of ancient microsynteny across metazoans due to <i>cis</i> -regulatory constraints. Genome Research, 2012, 22, 2356-2367.	2.4	126
21	Evolution at two levels of gene expression in yeast. Genome Research, 2014, 24, 411-421.	2.4	124
22	Pooled ChIP-Seq Links Variation in Transcription Factor Binding to Complex Disease Risk. Cell, 2016, 165, 730-741.	13.5	107
23	Common variants spanning <i>PLK4</i> are associated with mitotic-origin aneuploidy in human embryos. Science, 2015, 348, 235-238.	6.0	106
24	Genomeâ€wide approaches to the study of adaptive gene expression evolution. BioEssays, 2011, 33, 469-477.	1.2	89
25	The somatic mutation landscape of the human body. Genome Biology, 2019, 20, 298.	3.8	84
26	Common polymorphic transcript variation in human disease. Genome Research, 2009, 19, 567-575.	2.4	70
27	Evolutionary rate depends on number of protein-protein interactions independently of gene expression level. BMC Evolutionary Biology, 2004, 4, 13.	3.2	68
28	Systematic Detection of Polygenic cis-Regulatory Evolution. PLoS Genetics, 2011, 7, e1002023.	1.5	61
29	Discordance of DNA Methylation Variance Between two Accessible Human Tissues. Scientific Reports, 2015, 5, 8257.	1.6	56
30	The Quantitative Genetics of Phenotypic Robustness. PLoS ONE, 2010, 5, e8635.	1.1	55
31	Primate cell fusion disentangles gene regulatory divergence in neurodevelopment. Nature, 2021, 592, 421-427.	13.7	52
32	Fine-mapping cis-regulatory variants in diverse human populations. ELife, 2019, 8, .	2.8	51
33	High-resolution mapping of <i>cis</i> -regulatory variation in budding yeast. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10736-E10744.	3.3	50
34	Transcript Length Mediates Developmental Timing of Gene Expression Across Drosophila. Molecular Biology and Evolution, 2014, 31, 2879-2889.	3.5	49
35	Rate of evolution and gene dispensability. Nature, 2003, 421, 497-498.	13.7	46
36	Polygenic <i>cis</i> -regulatory adaptation in the evolution of yeast pathogenicity. Genome Research, 2012, 22, 1930-1939.	2.4	46

HUNTER B FRASER

#	Article	IF	CITATIONS
37	Human–chimpanzee fused cells reveal cis-regulatory divergence underlying skeletal evolution. Nature Genetics, 2021, 53, 467-476.	9.4	46
38	Behavior-dependent <i>cis</i> regulation reveals genes and pathways associated with bower building in cichlid fishes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11081-E11090.	3.3	42
39	Codon Usage and Selection on Proteins. Journal of Molecular Evolution, 2006, 63, 635-653.	0.8	40
40	Worldwide patterns of human epigenetic variation. Nature Ecology and Evolution, 2017, 1, 1577-1583.	3.4	40
41	Tissue-Specific cis-Regulatory Divergence Implicates eloF in Inhibiting Interspecies Mating in Drosophila. Current Biology, 2018, 28, 3969-3975.e3.	1.8	37
42	The cis-regulatory effects of modern human-specific variants. ELife, 2021, 10, .	2.8	36
43	The Molecular Mechanism of a Cis-Regulatory Adaptation in Yeast. PLoS Genetics, 2013, 9, e1003813.	1.5	35
44	Improving Estimates of Compensatory cis–trans Regulatory Divergence. Trends in Genetics, 2019, 35, 3-5.	2.9	33
45	Dissecting the Genetic Basis of a Complex cis-Regulatory Adaptation. PLoS Genetics, 2015, 11, e1005751.	1.5	30
46	A pooling-based approach to mapping genetic variants associated with DNA methylation. Genome Research, 2015, 25, 907-917.	2.4	30
47	A Novel Test for Selection on cis-Regulatory Elements Reveals Positive and Negative Selection Acting on Mammalian Transcriptional Enhancers. Molecular Biology and Evolution, 2013, 30, 2509-2518.	3.5	25
48	Bacterial Retrons Enable Precise Gene Editing in Human Cells. CRISPR Journal, 2022, 5, 31-39.	1.4	22
49	Coevolution, modularity and human disease. Current Opinion in Genetics and Development, 2006, 16, 637-644.	1.5	21
50	cis-Regulatory changes in locomotor genes are associated with the evolution of burrowing behavior. Cell Reports, 2022, 38, 110360.	2.9	19
51	Detecting selection with a genetic cross. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22323-22330.	3.3	18
52	Local Adaptation of Sun-Exposure-Dependent Gene Expression Regulation in Human Skin. PLoS Genetics, 2016, 12, e1006382.	1.5	18
53	Spatially varying cis-regulatory divergence in Drosophila embryos elucidates cis-regulatory logic. PLoS Genetics, 2018, 14, e1007631.	1.5	16
54	Molecular mechanisms of coronary disease revealed using quantitative trait loci for TCF21 binding, chromatin accessibility, and chromosomal looping. Genome Biology, 2020, 21, 135.	3.8	16

HUNTER B FRASER

#	Article	IF	CITATIONS
55	Comparative expression profiling reveals widespread coordinated evolution of gene expression across eukaryotes. Nature Communications, 2018, 9, 4963.	5.8	13
56	GRINS: Genetic elements that recode assembly-line polyketide synthases and accelerate their diversification. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
57	Disentangling Sources of Selection on Exonic Transcriptional Enhancers. Molecular Biology and Evolution, 2016, 33, 585-590.	3.5	9
58	Lineage-specific selection and the evolution of virulence in the <i>Candida</i> clade. Proceedings of the United States of America, 2021, 118, .	3.3	9
59	Cis-regulatory evolution in prokaryotes revealed by interspecific archaeal hybrids. Scientific Reports, 2017, 7, 3986.	1.6	8
60	Transcriptome diversity is a systematic source of variation in RNA-sequencing data. PLoS Computational Biology, 2022, 18, e1009939.	1.5	7
61	Divergent patterns of selection on metabolite levels and gene expression. Bmc Ecology and Evolution, 2021, 21, 185.	0.7	4
62	Reply to Zhang and Xu: Environment is indeed important in any phenotypic study. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2022917118.	3.3	0