List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1629231/publications.pdf Version: 2024-02-01

		9756	9839
220	21,779	73	141
papers	citations	h-index	g-index
232	232	232	18511
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	2013 Classification Criteria for Systemic Sclerosis: An American College of Rheumatology/European League Against Rheumatism Collaborative Initiative. Arthritis and Rheumatism, 2013, 65, 2737-2747.	6.7	2,359
2	Cyclophosphamide versus Placebo in Scleroderma Lung Disease. New England Journal of Medicine, 2006, 354, 2655-2666.	13.9	1,421
3	Recent Developments in Myofibroblast Biology. American Journal of Pathology, 2012, 180, 1340-1355.	1.9	1,043
4	Systemic sclerosis: a prototypic multisystem fibrotic disorder. Journal of Clinical Investigation, 2007, 117, 557-567.	3.9	967
5	Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II): a randomised controlled, double-blind, parallel group trial. Lancet Respiratory Medicine,the, 2016, 4, 708-719.	5.2	754
6	Systemic sclerosis. Nature Reviews Disease Primers, 2015, 1, 15002.	18.1	587
7	Effects of 1-Year Treatment with Cyclophosphamide on Outcomes at 2 Years in Scleroderma Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 1026-1034.	2.5	411
8	Stimulation of Type I Collagen Transcription in Human Skin Fibroblasts by TGF-β: Involvement of Smad 3. Journal of Investigative Dermatology, 1999, 112, 49-57.	0.3	363
9	Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nature Genetics, 2010, 42, 426-429.	9.4	351
10	Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nature Reviews Rheumatology, 2012, 8, 42-54.	3.5	297
11	Scleroderma: from cell and molecular mechanisms to disease models. Trends in Immunology, 2005, 26, 587-595.	2.9	283
12	Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nature Communications, 2014, 5, 3485.	5.8	263
13	Myofibroblasts in Murine Cutaneous Fibrosis Originate From Adiponectinâ€Positive Intradermal Progenitors. Arthritis and Rheumatology, 2015, 67, 1062-1073.	2.9	254
14	Transforming growth factor β as a therapeutic target in systemic sclerosis. Nature Reviews Rheumatology, 2009, 5, 200-206.	3.5	251
15	Toll-Like Receptor 4 Signaling Augments Transforming Growth Factor-Î ² Responses. American Journal of Pathology, 2013, 182, 192-205.	1.9	243
16	Pathogenesis of systemic sclerosis: recent insights of molecular and cellular mechanisms and therapeutic opportunities. Journal of Scleroderma and Related Disorders, 2017, 2, 137-152.	1.0	243
17	Transforming Growth Factor-β Repression of Matrix Metalloproteinase-1 in Dermal Fibroblasts Involves Smad3. Journal of Biological Chemistry, 2001, 276, 38502-38510.	1.6	222
18	Rosiglitazone Abrogates Bleomycin-Induced Scleroderma and Blocks Profibrotic Responses Through Peroxisome Proliferator-Activated Receptor-γ. American Journal of Pathology, 2009, 174, 519-533.	1.9	212

#	Article	IF	CITATIONS
19	Smad-dependent stimulation of type I collagen gene expression in human skin fibroblasts by TGF-β involves functional cooperation with p300/CBP transcriptional coactivators. Oncogene, 2000, 19, 3546-3555.	2.6	211
20	Antagonistic Regulation of Type I Collagen Gene Expression by Interferon-Î ³ and Transforming Growth Factor-Î ² . Journal of Biological Chemistry, 2001, 276, 11041-11048.	1.6	211
21	Targeted Disruption of TGF-β/Smad3 Signaling Modulates Skin Fibrosis in a Mouse Model of Scleroderma. American Journal of Pathology, 2004, 165, 203-217.	1.9	207
22	Tenascin-C drives persistence of organ fibrosis. Nature Communications, 2016, 7, 11703.	5.8	204
23	Identification of Novel Genetic Markers Associated with Clinical Phenotypes of Systemic Sclerosis through a Genome-Wide Association Strategy. PLoS Genetics, 2011, 7, e1002178.	1.5	201
24	Fibronectin ^{EDA} Promotes Chronic Cutaneous Fibrosis Through Toll-Like Receptor Signaling. Science Translational Medicine, 2014, 6, 232ra50.	5.8	195
25	Wnt/βâ€catenin signaling is hyperactivated in systemic sclerosis and induces Smadâ€dependent fibrotic responses in mesenchymal cells. Arthritis and Rheumatism, 2012, 64, 2734-2745.	6.7	193
26	Disruption of transforming growth factor ? signaling and profibrotic responses in normal skin fibroblasts by peroxisome proliferator-activated receptor ?. Arthritis and Rheumatism, 2004, 50, 1305-1318.	6.7	190
27	Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L1120-L1130.	1.3	189
28	Immunochip Analysis Identifies Multiple Susceptibility Loci for Systemic Sclerosis. American Journal of Human Genetics, 2014, 94, 47-61.	2.6	182
29	Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: A novel mouse model for scleroderma?. Arthritis and Rheumatism, 2011, 63, 1707-1717.	6.7	178
30	Expression and regulation of intracellular SMAD signaling in scleroderma skin fibroblasts. Arthritis and Rheumatism, 2003, 48, 1964-1978.	6.7	176
31	Interaction of Smad3 with a proximal smad-binding element of the human ?2(I) procollagen gene promoter required for transcriptional activation by TGF-?. Journal of Cellular Physiology, 2000, 183, 381-392.	2.0	171
32	The transcriptional coactivator and acetyltransferase p300 in fibroblast biology and fibrosis. Journal of Cellular Physiology, 2007, 213, 663-671.	2.0	163
33	Review: Interstitial Lung Disease Associated With Systemic Sclerosis and Idiopathic Pulmonary Fibrosis: How Similar and Distinct?. Arthritis and Rheumatology, 2014, 66, 1967-1978.	2.9	162
34	Fibrosis in systemic sclerosis: Emerging concepts and implications for targeted therapy. Autoimmunity Reviews, 2011, 10, 267-275.	2.5	159
35	PPARÎ ³ Downregulation by TGFß in Fibroblast and Impaired Expression and Function in Systemic Sclerosis: A Novel Mechanism for Progressive Fibrogenesis. PLoS ONE, 2010, 5, e13778.	1.1	158
36	Activation of the p38 Mitogen-activated Protein Kinase Mediates the Suppressive Effects of Type I Interferons and Transforming Growth Factor-β on Normal Hematopoiesis. Journal of Biological Chemistry, 2002, 277, 7726-7735.	1.6	153

#	Article	IF	CITATIONS
37	The Early-Immediate Gene EGR-1 Is Induced by Transforming Growth Factor- \hat{I}^2 and Mediates Stimulation of Collagen Gene Expression. Journal of Biological Chemistry, 2006, 281, 21183-21197.	1.6	153
38	Molecular Signatures in Skin Associated with Clinical Improvement during Mycophenolate Treatment in Systemic Sclerosis. Journal of Investigative Dermatology, 2013, 133, 1979-1989.	0.3	150
39	The MUC5B Variant Is Associated with Idiopathic Pulmonary Fibrosis but Not with Systemic Sclerosis Interstitial Lung Disease in the European Caucasian Population. PLoS ONE, 2013, 8, e70621.	1.1	142
40	Interstitial lung disease in connective tissue diseases: evolving concepts of pathogenesis and management. Arthritis Research and Therapy, 2010, 12, 213.	1.6	136
41	Egrâ€1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). Journal of Pathology, 2013, 229, 286-297.	2.1	133
42	A TGFβ-Responsive Gene Signature Is Associated with a Subset of Diffuse Scleroderma with Increased Disease Severity. Journal of Investigative Dermatology, 2010, 130, 694-705.	0.3	132
43	Nuclear β-Catenin Is Increased in Systemic Sclerosis Pulmonary Fibrosis and Promotes Lung Fibroblast Migration and Proliferation. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 915-922.	1.4	132
44	Scleroderma and Smads: Dysfunctional Smad family dynamics culminating in fibrosis. Arthritis and Rheumatism, 2002, 46, 1703-1713.	6.7	122
45	Peroxisome proliferatorâ€activated receptorâ€Î³ abrogates Smadâ€dependent collagen stimulation by targeting the p300 transcriptional coactivator. FASEB Journal, 2009, 23, 2968-2977.	0.2	113
46	Sustained Activation of Fibroblast Transforming Growth Factor-β/Smad Signaling in a Murine Model of Scleroderma. Journal of Investigative Dermatology, 2003, 121, 41-50.	0.3	109
47	Etiology, Risk Factors, and Biomarkers in Systemic Sclerosis with Interstitial Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 650-660.	2.5	105
48	Essential Roles for Early Growth Response Transcription Factor Egr-1 in Tissue Fibrosis and Wound Healing. American Journal of Pathology, 2009, 175, 1041-1055.	1.9	103
49	Selective inhibition of activin receptor-like kinase 5 signaling blocks profibrotic transforming growth factor ? responses in skin fibroblasts. Arthritis and Rheumatism, 2004, 50, 4008-4021.	6.7	102
50	Early growth response transcription factors: Key mediators of fibrosis and novel targets for anti-fibrotic therapy. Matrix Biology, 2011, 30, 235-242.	1.5	102
51	Targeted Inhibition of Gut Microbial Trimethylamine N-Oxide Production Reduces Renal Tubulointerstitial Fibrosis and Functional Impairment in a Murine Model of Chronic Kidney Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1239-1255.	1.1	102
52	Diminished Induction of Skin Fibrosis in Mice with MCP-1 Deficiency. Journal of Investigative Dermatology, 2006, 126, 1900-1908.	0.3	101
53	Modulation of Endogenous Smad Expression in Normal Skin Fibroblasts by Transforming Growth Factor-β. Experimental Cell Research, 2000, 258, 374-383.	1.2	100
54	Gastric antral vascular ectasia (watermelon stomach) in patients with systemic sclerosis. Arthritis and Rheumatism, 1996, 39, 341-346.	6.7	98

#	Article	IF	CITATIONS
55	Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis. Annals of the Rheumatic Diseases, 2013, 72, 1255-1258.	0.5	98
56	Wnt Coreceptor <i>Lrp5</i> Is a Driver of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 185-195.	2.5	95
57	Antitransforming growth factor-Î ² therapy in fibrosis: recent progress and implications for systemic sclerosis. Current Opinion in Rheumatology, 2008, 20, 720-728.	2.0	91
58	Emerging targets of disease-modifying therapy for systemic sclerosis. Nature Reviews Rheumatology, 2019, 15, 208-224.	3.5	91
59	SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis. Oncotarget, 2016, 7, 69321-69336.	0.8	91
60	Chitinase 1 Is a Biomarker for and Therapeutic Target in Scleroderma-Associated Interstitial Lung Disease That Augments TGF-β1 Signaling. Journal of Immunology, 2012, 189, 2635-2644.	0.4	90
61	Trichostatin A blocks TGF-β-induced collagen gene expression in skin fibroblasts: Involvement of Sp1. Biochemical and Biophysical Research Communications, 2007, 354, 420-426.	1.0	89
62	p300 Is Elevated in Systemic Sclerosis and Its Expression Is Positively Regulated by TGF-Î2: Epigenetic Feed-Forward Amplification of Fibrosis. Journal of Investigative Dermatology, 2013, 133, 1302-1310.	0.3	87
63	The Early Growth Response Gene Egr2 (Alias Krox20) Is a Novel Transcriptional Target of Transforming Growth Factor-β that Is Up-Regulated in Systemic Sclerosis and Mediates Profibrotic Responses. American Journal of Pathology, 2011, 178, 2077-2090.	1.9	86
64	The adipokine adiponectin has potent anti-fibrotic effects mediated via adenosine monophosphate-activated protein kinase: novel target for fibrosis therapy. Arthritis Research and Therapy, 2012, 14, R229.	1.6	86
65	Fibroblast expression of the coactivator p300 governs the intensity of profibrotic response to transforming growth factor ?. Arthritis and Rheumatism, 2005, 52, 1248-1258.	6.7	83
66	Smad-Independent Transforming Growth Factor-β Regulation of Early Growth Response-1 and Sustained Expression in Fibrosis. American Journal of Pathology, 2008, 173, 1085-1099.	1.9	82
67	The Histone Deacetylase Sirtuin 1 Is Reduced in Systemic Sclerosis and Abrogates Fibrotic Responses by Targeting Transforming Growth Factor β Signaling. Arthritis and Rheumatology, 2015, 67, 1323-1334.	2.9	82
68	Intracellular TGF-β Receptor Blockade Abrogates Smad-Dependent Fibroblast Activation In Vitro and In Vivo. Journal of Investigative Dermatology, 2006, 126, 1733-1744.	0.3	81
69	Levels of adiponectin, a marker for PPAR-gamma activity, correlate with skin fibrosis in systemic sclerosis: potential utility as a biomarker?. Arthritis Research and Therapy, 2012, 14, R102.	1.6	81
70	Transforming growth factor-beta in systemic sclerosis scleroderma. Frontiers in Bioscience - Scholar, 2009, S1, 226-235.	0.8	79
71	Anti-topoisomerase I (Anti-Scl-70) antibodies in patients with systemic lupus erythematosus. Arthritis and Rheumatism, 2001, 44, 376-383.	6.7	78
72	Clinical and serological features of systemic sclerosis in a multicenter African American cohort. Medicine (United States), 2017, 96, e8980.	0.4	78

#	Article	IF	CITATIONS
73	Proteasomal inhibition after injury prevents fibrosis by modulating TGF-β ₁ signalling. Thorax, 2012, 67, 139-146.	2.7	77
74	Transethnic meta-analysis identifies <i>CSDMA</i> and <i>PRDM1</i> as susceptibility genes to systemic sclerosis. Annals of the Rheumatic Diseases, 2017, 76, 1150-1158.	0.5	77
75	TLR4-dependent fibroblast activation drives persistent organ fibrosis in skin and lung. JCI Insight, 2018, 3, .	2.3	77
76	Modulation of cellular tryptophan metabolism in human fibroblasts by transforming growth factor-β: Selective inhibition of indoleamine 2,3-dioxygenase and tryptophanyl-tRNA synthetase gene expression. , 1998, 177, 174-186.		76
77	The Cause and Pathogenesis of the Eosinophilia-Myalgia Syndrome. Annals of Internal Medicine, 1992, 116, 140-147.	2.0	75
78	Fibrosis in Systemic Sclerosis. Rheumatic Disease Clinics of North America, 2008, 34, 115-143.	0.8	74
79	Modulation of human $\hat{l}\pm1(l)$ procollagen gene activity by interaction with Sp1 and Sp3 transcription factors in vitro. Gene, 1998, 215, 101-110.	1.0	73
80	MAP-kinase activity necessary for TGFβ1-stimulated mesangial cell type I collagen expression requires adhesion-dependent phosphorylation of FAK tyrosine 397. Journal of Cell Science, 2007, 120, 4230-4240.	1.2	69
81	Development of pulmonary hypertension in a high-risk population with systemic sclerosis in the Pulmonary Hypertension Assessment and Recognition of Outcomes in Scleroderma (PHAROS) cohort study. Seminars in Arthritis and Rheumatism, 2014, 44, 55-62.	1.6	69
82	Peroxisome proliferator-activated receptor γ: innate protection from excessive fibrogenesis and potential therapeutic target in systemic sclerosis. Current Opinion in Rheumatology, 2010, 22, 671-676.	2.0	66
83	Adiponectin is an endogenous anti-fibrotic mediator and therapeutic target. Scientific Reports, 2017, 7, 4397.	1.6	64
84	Increased Bleomycin-Induced Skin Fibrosis in Mice Lacking the Th1-Specific Transcription Factor T-bet. Pathobiology, 2006, 73, 224-237.	1.9	62
85	A synthetic PPAR-Î ³ agonist triterpenoid ameliorates experimental fibrosis: PPAR-Î ³ -independent suppression of fibrotic responses. Annals of the Rheumatic Diseases, 2014, 73, 446-454.	0.5	62
86	Experimentally-Derived Fibroblast Gene Signatures Identify Molecular Pathways Associated with Distinct Subsets of Systemic Sclerosis Patients in Three Independent Cohorts. PLoS ONE, 2015, 10, e0114017.	1.1	62
87	Postâ€epidemic eosinophilia–myalgia syndrome associated with Lâ€ŧryptophan. Arthritis and Rheumatism, 2011, 63, 3633-3639.	6.7	61
88	The Pulmonary Fibrosis-Associated MUC5B Promoter Polymorphism Does Not Influence the Development of Interstitial Pneumonia in Systemic Sclerosis. Chest, 2012, 142, 1584-1588.	0.4	61
89	Negative modulation of ?1(I) procollagen gene expression in human skin fibroblasts: Transcriptional inhibition by interferon-?. , 1999, 179, 97-108.		60
90	Antinuclear antibody-negative systemic sclerosis. Seminars in Arthritis and Rheumatism, 2015, 44, 680-686.	1.6	60

#	Article	IF	CITATIONS
91	Identification of elements in the promoter region of the ?1(I) procollagen gene involved in its up-regulated expression in systemic sclerosis. Arthritis and Rheumatism, 1998, 41, 2048-2058.	6.7	59
92	Esophageal dilatation and interstitial lung disease in systemic sclerosis: A cross-sectional study. Seminars in Arthritis and Rheumatism, 2016, 46, 109-114.	1.6	59
93	The Tumor Suppressor p53 Abrogates Smad-dependent Collagen Gene Induction in Mesenchymal Cells. Journal of Biological Chemistry, 2004, 279, 47455-47463.	1.6	58
94	Novel lung imaging biomarkers and skin gene expression subsetting in dasatinib treatment of systemic sclerosis-associated interstitial lung disease. PLoS ONE, 2017, 12, e0187580.	1.1	58
95	Regulation of Connective Tissue Synthesis in Systemic Sclerosis. International Reviews of Immunology, 1995, 12, 187-199.	1.5	55
96	Toll-Like Receptor-4 Signaling Drives Persistent Fibroblast Activation and Prevents Fibrosis Resolution in Scleroderma. Advances in Wound Care, 2017, 6, 356-369.	2.6	55
97	Emerging Roles of Innate Immune Signaling and Toll-Like Receptors in Fibrosis and Systemic Sclerosis. Current Rheumatology Reports, 2015, 17, 474.	2.1	54
98	Endogenous ligands of TLR4 promote unresolving tissue fibrosis: Implications for systemic sclerosis and its targeted therapy. Immunology Letters, 2018, 195, 9-17.	1.1	53
99	Advances in epigenetics in systemic sclerosis: molecular mechanisms and therapeutic potential. Nature Reviews Rheumatology, 2021, 17, 596-607.	3.5	53
100	Multicriteria decision analysis methods with 1000Minds for developing systemic sclerosis classification criteria. Journal of Clinical Epidemiology, 2014, 67, 706-714.	2.4	52
101	<i>>HLA</i> and autoantibodies define scleroderma subtypes and risk in African and European Americans and suggest a role for molecular mimicry. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 552-562.	3.3	52
102	The JAK/STAT pathway is activated in systemic sclerosis and is effectively targeted by tofacitinib. Journal of Scleroderma and Related Disorders, 2020, 5, 40-50.	1.0	51
103	Lrp5/β-Catenin Signaling Controls Lung Macrophage Differentiation and Inhibits Resolution of Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 191-201.	1.4	50
104	Tollâ€like Receptor 9 Signaling Is Augmented in Systemic Sclerosis and Elicits Transforming Growth Factor β–Dependent Fibroblast Activation. Arthritis and Rheumatology, 2016, 68, 1989-2002.	2.9	50
105	Prevalence, prognosis, and factors associated with left ventricular diastolic dysfunction in systemic sclerosis. Clinical and Experimental Rheumatology, 2012, 30, S30-7.	0.4	49
106	Pulmonary Arterial Hypertension in Systemic Sclerosis. Treatments in Respiratory Medicine, 2004, 3, 339-352.	1.4	48
107	Early Growth Response 3 (Egr-3) Is Induced by Transforming Growth Factor-Î ² and Regulates Fibrogenic Responses. American Journal of Pathology, 2013, 183, 1197-1208.	1.9	48
108	Molecular characterization of systemic sclerosis esophageal pathology identifies inflammatory and proliferative signatures. Arthritis Research and Therapy, 2015, 17, 194.	1.6	48

#	Article	IF	CITATIONS
109	Animal models of scleroderma: recent progress. Current Opinion in Rheumatology, 2016, 28, 561-570.	2.0	48
110	Systemic sclerosis: an update. Bulletin of the NYU Hospital for Joint Diseases, 2008, 66, 198-202.	0.7	48
111	A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling. Journal of Immunology, 2013, 191, 2956-2966.	0.4	46
112	Elevated Expression of the Genes for Transforming Growth Factor-β1 and Type VI Collagen in Diffuse Fasciitis Associated with the Eosinophilia-Myalgia Syndrome. Journal of Investigative Dermatology, 1991, 96, 20-25.	0.3	45
113	Pharmacological Inhibition of Toll-Like Receptor-4 Signaling by TAK242 Prevents and Induces Regression of Experimental Organ Fibrosis. Frontiers in Immunology, 2018, 9, 2434.	2.2	45
114	Longitudinal Evaluation of PROMIS-29 and FACIT-Dyspnea Short Forms in Systemic Sclerosis. Journal of Rheumatology, 2015, 42, 64-72.	1.0	44
115	Dermal white adipose tissue implicated in SSc pathogenesis. Nature Reviews Rheumatology, 2017, 13, 71-72.	3.5	44
116	Myopathy with mitochondrial alterations in patients with primary biliary cirrhosis and antimitochondrial antibodies. Arthritis and Rheumatism, 1993, 36, 1468-1475.	6.7	43
117	Keratinocyte growth factor expression is suppressed in early acute lung injury/acute respiratory distress syndrome by smad and c-Abl pathways*. Critical Care Medicine, 2009, 37, 1678-1684.	0.4	43
118	Regulation of Matrix Remodeling by Peroxisome Proliferator-Activated Receptor-Î ³ : A Novel Link Between Metabolism and Fibrogenesis. Open Rheumatology Journal, 2012, 6, 103-115.	0.1	43
119	Inhibition of β-Catenin Signaling in the Skin Rescues Cutaneous Adipogenesis in Systemic Sclerosis: A Randomized, Double-Blind, Placebo-Controlled Trial of C-82. Journal of Investigative Dermatology, 2017, 137, 2473-2483.	0.3	43
120	Myeloablation followed by autologous stem cell transplantation normalises systemic sclerosis molecular signatures. Annals of the Rheumatic Diseases, 2019, 78, 1371-1378.	0.5	43
121	Egr-1 Induces a Profibrotic Injury/Repair Gene Program Associated with Systemic Sclerosis. PLoS ONE, 2011, 6, e23082.	1.1	42
122	Generation of a Core Set of Items to Develop Classification Criteria for Scleroderma Renal Crisis Using Consensus Methodology. Arthritis and Rheumatology, 2019, 71, 964-971.	2.9	41
123	Emerging cellular and molecular targets in fibrosis. Current Opinion in Rheumatology, 2014, 26, 607-614.	2.0	40
124	An orally-active adiponectin receptor agonist mitigates cutaneous fibrosis, inflammation and microvascular pathology in a murine model of systemic sclerosis. Scientific Reports, 2018, 8, 11843.	1.6	39
125	Design of a randomised, placebo-controlled clinical trial of nintedanib in patients with systemic sclerosis-associated interstitial lung disease (SENSCISâ,,¢). Clinical and Experimental Rheumatology, 2017, 35 Suppl 106, 75-81.	0.4	39
126	Constitutive Smad signaling and Smad-dependent collagen gene expression in mouse embryonic fibroblasts lacking peroxisome proliferator-activated receptor-Î ³ . Biochemical and Biophysical Research Communications, 2008, 374, 231-236.	1.0	38

#	Article	IF	CITATIONS
127	Inhibition of collagen gene expression by interferon-γ: Novel role of the CCAAT/enhancer binding protein β (C/EBPβ). Journal of Cellular Physiology, 2006, 207, 251-260.	2.0	37
128	Targeting CD38-dependent NAD+ metabolism to mitigate multiple organ fibrosis. IScience, 2021, 24, 101902.	1.9	36
129	Identification of Optimal Mouse Models of Systemic Sclerosis by Interspecies Comparative Genomics. Arthritis and Rheumatology, 2016, 68, 2003-2015.	2.9	35
130	Contribution of monocytes and macrophages to the pathogenesis of systemic sclerosis: recent insights and therapeutic implications. Current Opinion in Rheumatology, 2021, 33, 463-470.	2.0	35
131	Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-β responsiveness. Experimental Cell Research, 2008, 314, 1094-1104.	1.2	34
132	Serum Amyloid A Is a Marker for Pulmonary Involvement in Systemic Sclerosis. PLoS ONE, 2015, 10, e0110820.	1.1	34
133	Molecular pathways as novel therapeutic targets in systemic sclerosis. Current Opinion in Rheumatology, 2007, 19, 568-573.	2.0	33
134	Targeting TLRs and the inflammasome in systemic sclerosis. , 2018, 192, 163-169.		33
135	Current status of systemic sclerosis biomarkers: applications for diagnosis, management and drug development. Expert Review of Clinical Immunology, 2013, 9, 1077-1090.	1.3	32
136	Fibrosis in systemic sclerosis: common and unique pathobiology. Fibrogenesis and Tissue Repair, 2012, 5, S18.	3.4	31
137	Systemic sclerosis: beyond limited and diffuse subsets?. Nature Reviews Rheumatology, 2014, 10, 200-202.	3.5	31
138	Clinical characteristics, visceral involvement, and mortality in at-risk or early diffuse systemic sclerosis: a longitudinal analysis of an observational prospective multicenter US cohort. Arthritis Research and Therapy, 2021, 23, 170.	1.6	30
139	The relationship between skin symptoms and the scleroderma modification of the health assessment questionnaire, the modified Rodnan skin score, and skin pathology in patients with systemic sclerosis. Rheumatology, 2016, 55, 911-917.	0.9	29
140	In perspective: Murine models of scleroderma. Current Rheumatology Reports, 2008, 10, 173-182.	2.1	28
141	New promising drugs for the treatment of systemic sclerosis: pathogenic considerations, enhanced classifications, and personalized medicine. Expert Opinion on Investigational Drugs, 2021, 30, 635-652.	1.9	28
142	A20 suppresses canonical Smad-dependent fibroblast activation: novel function for an endogenous inflammatory modulator. Arthritis Research and Therapy, 2016, 18, 216.	1.6	27
143	Nrf2 exerts cell-autonomous antifibrotic effects: compromised function in systemic sclerosis and therapeutic rescue with a novel heterocyclic chalcone derivative. Translational Research, 2017, 183, 71-86.e1.	2.2	27
144	Adipocyte-specific Repression of PPAR-gamma by NCoR Contributes to Scleroderma Skin Fibrosis. Arthritis Research and Therapy, 2018, 20, 145.	1.6	26

#	Article	IF	CITATIONS
145	Elevated levels of eosinophil major basic protein in the sera of patients with systemic sclerosis. Arthritis and Rheumatism, 1995, 38, 939-945.	6.7	25
146	Changes in mental health symptoms from pre-COVID-19 to COVID-19 among participants with systemic sclerosis from four countries: A Scleroderma Patient-centered Intervention Network (SPIN) Cohort study. Journal of Psychosomatic Research, 2020, 139, 110262.	1.2	25
147	Animal Models of Scleroderma. , 2004, 102, 377-394.		24
148	A candidate gene study reveals association between a variant of the Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) gene and systemic sclerosis. Arthritis Research and Therapy, 2015, 17, 128.	1.6	24
149	Short lymphocyte, but not granulocyte, telomere length in a subset of patients with systemic sclerosis. Annals of the Rheumatic Diseases, 2019, 78, 1142-1144.	0.5	24
150	Fibronectin EDA forms the chronic fibrotic scar after contusive spinal cord injury. Neurobiology of Disease, 2018, 116, 60-68.	2.1	23
151	Risk Factors for Mortality and Cardiopulmonary Hospitalization in Systemic Sclerosis Patients At Risk for Pulmonary Hypertension, in the PHAROS Registry. Journal of Rheumatology, 2019, 46, 176-183.	1.0	23
152	The Transcriptional Cofactor Nab2 Is Induced by TGF-Î ² and Suppresses Fibroblast Activation: Physiological Roles and Impaired Expression in Scleroderma. PLoS ONE, 2009, 4, e7620.	1.1	23
153	Brief Report: Association of Elevated Adipsin Levels With Pulmonary Arterial Hypertension in Systemic Sclerosis. Arthritis and Rheumatology, 2017, 69, 2062-2068.	2.9	22
154	Diffuse cardiac fibrosis quantification in early systemic sclerosis by magnetic resonance imaging and correlation with skin fibrosis. Journal of Scleroderma and Related Disorders, 2018, 3, 159-169.	1.0	22
155	Inhibition of Type I Collagen mRNA Expression Independent of Tryptophan Depletion in Interferon-Î ³ -Treated Human Dermal Fibroblasts. Journal of Investigative Dermatology, 1995, 105, 388-393.	0.3	21
156	Protocol for a partially nested randomised controlled trial to evaluate the effectiveness of the scleroderma patient-centered intervention network COVID-19 home-isolation activities together (SPIN-CHAT) program to reduce anxiety among at-risk scleroderma patients. Journal of Psychosomatic Research, 2020, 135, 110132.	1.2	21
157	Antifibrotic therapy in scleroderma: Extracellular or intracellular targeting of activated fibroblasts?. Current Rheumatology Reports, 2004, 6, 164-170.	2.1	20
158	Recent Developments in the Classification, Evaluation, Pathophysiology, and Management of Scleroderma Renal Crisis. Current Rheumatology Reports, 2016, 18, 5.	2.1	20
159	Rationally-based therapeutic disease modification in systemic sclerosis: Novel strategies. Seminars in Cell and Developmental Biology, 2020, 101, 146-160.	2.3	20
160	Adipocytic Progenitor Cells Give Rise to Pathogenic Myofibroblasts: Adipocyte-to-Mesenchymal Transition and Its Emerging Role in Fibrosis in Multiple Organs. Current Rheumatology Reports, 2020, 22, 79.	2.1	20
161	Autoantibodies to Nuclear Lamin C in the Eosinophilia—Myalgia Syndrome Associated with L-Tryptophan Ingestion. Arthritis and Rheumatism, 1992, 35, 106-109.	6.7	19
162	Genetic susceptibility loci of idiopathic interstitial pneumonia do not represent risk for systemic sclerosis: a case control study in Caucasian patients. Arthritis Research and Therapy, 2016, 18, 20.	1.6	18

#	Article	IF	CITATIONS
163	The NADase enzyme CD38: an emerging pharmacological target for systemic sclerosis, systemic lupus erythematosus and rheumatoid arthritis. Current Opinion in Rheumatology, 2020, 32, 488-496.	2.0	18
164	Tenascin-C in fibrosis in multiple organs: Translational implications. Seminars in Cell and Developmental Biology, 2022, 128, 130-136.	2.3	18
165	The Primary Cilium: Emerging Role as a Key Player in Fibrosis. Current Rheumatology Reports, 2019, 21, 29.	2.1	16
166	Lung Cancer Survival in Patients With Autoimmune Disease. JAMA Network Open, 2020, 3, e2029917.	2.8	16
167	Adiponectin inhibits Wnt co-receptor, Lrp6, phosphorylation and β-catenin signaling. Biochemical and Biophysical Research Communications, 2016, 470, 606-612.	1.0	14
168	Calcinosis in Systemic Sclerosis: Updates in Pathophysiology, Evaluation, and Treatment. Current Rheumatology Reports, 2020, 22, 73.	2.1	14
169	Early Stage Lung Cancer Detection in Systemic Sclerosis Does Not Portend Survival Benefit: A Cross Sectional Study. PLoS ONE, 2015, 10, e0117829.	1.1	13
170	Calcinosis in scleroderma made crystal clear. Current Opinion in Rheumatology, 2019, 31, 589-594.	2.0	13
171	Biological and clinical insights from a randomized phase 2 study of an anti-oncostatin M monoclonal antibody in systemic sclerosis. Rheumatology, 2022, 62, 234-242.	0.9	13
172	Adiponectin Deregulation in Systemic Autoimmune Rheumatic Diseases. International Journal of Molecular Sciences, 2021, 22, 4095.	1.8	11
173	Inorganic pyrophosphate is reduced in patients with systemic sclerosis. Rheumatology, 2022, 61, 1158-1165.	0.9	11
174	Systemic Sclerosis and the Scleroderma-Spectrum Disorders. , 2009, , 1311-1351.		11
175	EOSINOPHILIA-MYALGIA SYNDROME. International Journal of Dermatology, 1992, 31, 223-228.	0.5	10
176	Brief Report: Wholeâ€Exome Sequencing to Identify Rare Variants and Gene Networks That Increase Susceptibility to Scleroderma in African Americans. Arthritis and Rheumatology, 2018, 70, 1654-1660.	2.9	10
177	The non-neuronal cyclin-dependent kinase 5 is a fibrotic mediator potentially implicated in systemic sclerosis and a novel therapeutic target. Oncotarget, 2018, 9, 10294-10306.	0.8	10
178	Imatinib mesylate causes genome-wide transcriptional changes in systemic sclerosis fibroblasts in vitro. Clinical and Experimental Rheumatology, 2012, 30, S86-96.	0.4	10
179	Matrix protein tenascin-C expands and reversibly blocks maturation of murine eosinophil progenitors. Journal of Allergy and Clinical Immunology, 2018, 142, 695-698.e4.	1.5	9
180	Factors associated with fears due to COVID-19: A Scleroderma Patient-centered Intervention Network (SPIN) COVID-19 cohort study. Journal of Psychosomatic Research, 2021, 140, 110314.	1.2	9

#	Article	IF	CITATIONS
181	Mental health before and during the pandemic in people with systemic sclerosis. Lancet Rheumatology, The, 2022, 4, e82-e85.	2.2	9
182	Early-Life Gut Dysbiosis: A Driver ofÂLater-Life Fibrosis?. Journal of Investigative Dermatology, 2017, 137, 2253-2255.	0.3	8
183	PLG nanoparticles target fibroblasts and MARCO+ monocytes to reverse multiorgan fibrosis. JCI Insight, 2022, 7, .	2.3	8
184	Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation. IScience, 2022, 25, 104669.	1.9	8
185	Circulating CTRP9 Is Associated With Severity of Systemic Sclerosis–Associated Interstitial Lung Disease. Arthritis Care and Research, 2023, 75, 152-157.	1.5	7
186	Pathological pulmonary vascular remodeling is induced by type V collagen in a model of scleroderma. Pathology Research and Practice, 2021, 220, 153382.	1.0	6
187	Editorial: Genomic Advances in Systemic Sclerosis: It Is Time for Precision. Arthritis and Rheumatology, 2015, 67, 2801-2805.	2.9	5
188	Mutation in LEMD3 (Man1) Associated with Osteopoikilosis and Late-Onset Generalized Morphea: A New Buschke-Ollendorf Syndrome Variant. Case Reports in Dermatological Medicine, 2016, 2016, 1-9.	0.1	5
189	Chemical exposure-induced systemic fibrosing disorders: Novel insights into systemic sclerosis etiology and pathogenesis. Seminars in Arthritis and Rheumatism, 2020, 50, 1226-1237.	1.6	5
190	Scleroderma-systemic sclerosis. , 2013, , 656-666.		5
191	Obliterative vasculopathy in systemic sclerosis: endothelial precursor cells as novel targets for therapy. Expert Review of Clinical Immunology, 2007, 3, 11-15.	1.3	4
192	Cyclophosphamide: A Novel Treatment of Gastric Antral Vascular Ectasia Associated with Systemic Sclerosis?. Current Rheumatology Reports, 2010, 12, 4-7.	2.1	4
193	Right ventricular cardiomyopathy in systemic sclerosis. Rheumatology, 2017, 56, 1045-1047.	0.9	4
194	Pathophysiology of Fibrosis in Systemic Sclerosis. , 2017, , 261-280.		4
195	Getting to the heart of the matter: detecting and managing cardiac complications in systemic sclerosis. Annals of the Rheumatic Diseases, 2019, 78, 1452-1453.	0.5	4
196	Role of RP105 and A20 in negative regulation of toll-like receptor activity in fibrosis: potential targets for therapeutic intervention. AIMS Allergy and Immunology, 2021, 5, 102-126.	0.3	4
197	The novel adipokine C1q-TNF related protein 9 (CTRP9) is elevated in systemic sclerosis-associated interstitial lung disease. Clinical and Experimental Rheumatology, 2018, 36 Suppl 113, 184-185.	0.4	4
198	Alterations of the Primary Cilia Gene <i>SPAG17</i> and <i>SOX9</i> Locus Noncoding RNAs Identified by RNA‣equencing Analysis in Patients With Systemic Sclerosis. Arthritis and Rheumatology, 2023, 75, 108-119.	2.9	4

#	Article	IF	CITATIONS
199	Systemic Sclerosis (Scleroderma). , 2012, , 1705-1713.		3
200	Etiology and Pathogenesis of Scleroderma. , 2017, , 1400-1423.e3.		3
201	Etiology and pathogenesis of systemic sclerosis. , 2015, , 1177-1189.		3
202	Novel paradigm for treating vasculopathy in systemic sclerosis: Vascular progenitor cells and statins. Current Rheumatology Reports, 2007, 9, 1-3.	2.1	2
203	Tyrosine kinase inhibitors in systemic sclerosis: The case for imatinib. Current Rheumatology Reports, 2009, 11, 161-163.	2.1	2
204	B-cell–Targeted Therapy for the Fibrotic Complications of Systemic Sclerosis. Current Rheumatology Reports, 2011, 13, 1-3.	2.1	2
205	Mechanism of Fibrosis. , 2012, , 255-265.		2
206	Scleroderma–Systemic Sclerosis. , 2019, , 743-755.e1.		2
207	Label-free spectroscopic imaging of the skin characterizes biochemical changes associated with systemic sclerosis. Vibrational Spectroscopy, 2020, 109, 103102.	1.2	2
208	The dynamic organelle primary cilia. Current Opinion in Rheumatology, 2021, Publish Ahead of Print, 495-504.	2.0	2
209	Negative modulation of $\hat{l}\pm 1$ (I) procollagen gene expression in human skin fibroblasts: Transcriptional inhibition by interferon- \hat{l}^3 . Journal of Cellular Physiology, 1999, 179, 97.	2.0	2
210	Progress in systemic sclerosis: Novel therapeutic paradigms. Current Rheumatology Reports, 2000, 2, 481-485.	2.1	1
211	Methotrexate shows marginal clinical efficacy in early scleroderma. Current Rheumatology Reports, 2002, 4, 97-98.	2.1	1
212	Linking autoimmunity, short telomeres and lung fibrosis in SSc. Nature Reviews Rheumatology, 2021, 17, 511-512.	3.5	1
213	Identification of elements in the promoter region of the $\hat{I}\pm1(I)$ procollagen gene involved in its up-regulated expression in systemic sclerosis. , 1998, 41, 2048.		1
214	Systemic sclerosis. , 2008, , 813-823.		1
215	Etiology and Pathogenesis of Scleroderma. , 2013, , 1343-1365.		1
216	Clinical trials for the treatment of systemic sclerosis/scleroderma. Current Rheumatology Reports, 1999, 1, 13-14.	2.1	0

#	Article	IF	CITATIONS
217	Systemic Sclerosis (Scleroderma). , 2020, , 575-605.		Ο
218	Systemic Sclerosis. , 2010, , 2913-2917.		0
219	Eosinophilia-Myalgia Syndrome, Eosinophilic Fasciitis, and Related Fasciitis Disorders. , 2014, , 1561-1573.		Ο
220	Epigenetic regulation of the Klotho / Miz 1 axis in cigaretteâ€smoke extract (CSE)â€induced alveolar epithelial cell (AEC) mtDNA damage and apoptosis. FASEB Journal, 2020, 34, 1-1.	0.2	0