Robert L Geahlen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1629018/publications.pdf

Version: 2024-02-01

66343 71685 6,302 118 42 76 citations h-index g-index papers 118 118 118 6786 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Identification of the Direct Substrates of the ABL Kinase via Kinase Assay Linked Phosphoproteomics with Multiple Drug Treatments. Journal of Proteome Research, 2019, 18, 1679-1690.	3.7	8
2	Spleen Tyrosine Kinase–Mediated Autophagy Is Required for Epithelial–Mesenchymal Plasticity and Metastasis in Breast Cancer. Cancer Research, 2019, 79, 1831-1843.	0.9	95
3	A Mouse Model for the Study of SYK Function through Chemical Genetics Demonstrates SYK-Dependent Signaling through the B Cell Receptor, but Not TLR4. ImmunoHorizons, 2019, 3, 254-261.	1.8	1
4	SYK., 2018,, 5257-5264.		0
5	Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves. Scientific Reports, 2017, 7, 1541.	3.3	174
6	Identification of Upstream Kinases by Fluorescence Complementation Mass Spectrometry. ACS Central Science, 2017, 3, 1078-1085.	11.3	9
7	Modulation of BCR Signaling by the Induced Dimerization of Receptor-Associated SYK. Antibodies, 2017, 6, 23.	2.5	3
8	Regulation of epithelial-mesenchymal transition and metastasis by TGF- \hat{l}^2 , P-bodies, and autophagy. Oncotarget, 2017, 8, 103302-103314.	1.8	75
9	SYK., 2016,, 1-7.		O
10	A Computational Study of the Effects of Syk Activity on B Cell Receptor Signaling Dynamics. Processes, 2015, 3, 75-97.	2.8	2
11	Stress Granules Modulate SYK to Cause Microglial Cell Dysfunction in Alzheimer's Disease. EBioMedicine, 2015, 2, 1785-1798.	6.1	42
12	Fast, multi-frequency and quantitative nanomechanical mapping of live cells using the atomic force microscope. Scientific Reports, 2015, 5, 11692.	3.3	109
13	In-depth analyses of B cell signaling through tandem mass spectrometry of phosphopeptides enriched by PolyMAC. International Journal of Mass Spectrometry, 2015, 377, 744-753.	1.5	18
14	Syk Is Recruited to Stress Granules and Promotes Their Clearance through Autophagy. Journal of Biological Chemistry, 2015, 290, 27803-27815.	3.4	52
15	Nanomechanical Property Maps of Breast Cancer Cells As Determined by Multiharmonic Atomic Force Microscopy Reveal Syk-Dependent Changes in Microtubule Stability Mediated by MAP1B. Biochemistry, 2015, 54, 60-68.	2.5	39
16	Calling in SYK: SYK's dual role as a tumor promoter and tumor suppressor in cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 254-263.	4.1	100
17	Syk Interacts with and Phosphorylates Nucleolin To Stabilize Bcl-x _L mRNA and Promote Cell Survival. Molecular and Cellular Biology, 2014, 34, 3788-3799.	2.3	20
18	Getting Syk: spleen tyrosine kinase as a therapeutic target. Trends in Pharmacological Sciences, 2014, 35, 414-422.	8.7	195

#	Article	IF	CITATIONS
19	Global Phosphoproteomics of Activated B Cells Using Complementary Metal Ion Functionalized Soluble Nanopolymers. Analytical Chemistry, 2014, 86, 6363-6371.	6.5	17
20	Modulation by Syk of Bcl-2, calcium and the calpain–calpastatin proteolytic system in human breast cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2153-2164.	4.1	11
21	Differential recognition of sykâ€binding sites by each of the two phosphotyrosineâ€binding pockets of the Vav SH2 domain. Biopolymers, 2013, 99, 897-907.	2.4	11
22	A Quantitative Proteomics-Based Competition Binding Assay to Characterize plTAM–Protein Interactions. Analytical Chemistry, 2013, 85, 5071-5077.	6.5	4
23	Intracellular targets for a phosphotyrosine peptidomimetic include the mitotic kinesin, MCAK. Biochemical Pharmacology, 2013, 86, 597-611.	4.4	5
24	Syk Inhibits the Activity of Protein Kinase A by Phosphorylating Tyrosine 330 of the Catalytic Subunit. Journal of Biological Chemistry, 2013, 288, 10870-10881.	3.4	14
25	Identification of Direct Tyrosine Kinase Substrates Based on Protein Kinase Assay-Linked Phosphoproteomics. Molecular and Cellular Proteomics, 2013, 12, 2969-2980.	3.8	35
26	Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5615-5620.	7.1	115
27	Quantitative Mapping of Local Mechanical Properties of Living Cells at Near-Physiological Conditions Using Multi-Harmonic Atomic Force Microscopy. , 2012, , .		0
28	Multiplexed Quantitation of Protein Expression and Phosphorylation Based on Functionalized Soluble Nanopolymers. Journal of the American Chemical Society, 2012, 134, 18201-18204.	13.7	21
29	A Peptide-Based Biosensor Assay To Detect Intracellular Syk Kinase Activation and Inhibition. Biochemistry, 2012, 51, 7515-7524.	2.5	23
30	Synthesis of a Phosphoserine Mimetic Prodrug with Potent 14-3-3 Protein Inhibitory Activity. Chemistry and Biology, 2012, 19, 764-771.	6.0	51
31	Akt2 inhibits the activation of NFAT in lymphocytes by modulating calcium release from intracellular stores. Cellular Signalling, 2012, 24, 1064-1073.	3.6	12
32	The protein-tyrosine kinase Syk interacts with the C-terminal region of tensin2. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 199-205.	4.1	9
33	Two Closely Spaced Tyrosines Regulate NFAT Signaling in B Cells via Syk Association with Vav. Molecular and Cellular Biology, 2011, 31, 2984-2996.	2.3	25
34	Proteomic Studies of Syk-Interacting Proteins Using a Novel Amine-Specific Isotope Tag and GFP Nanotrap. Journal of the American Society for Mass Spectrometry, 2011, 22, 319-328.	2.8	21
35	Regulation of Syk by Phosphorylation on Serine in the Linker Insert. Journal of Biological Chemistry, 2010, 285, 39844-39854.	3.4	24
36	In-depth Analyses of Kinase-dependent Tyrosine Phosphoproteomes Based on Metal Ion-functionalized Soluble Nanopolymers. Molecular and Cellular Proteomics, 2010, 9, 2162-2172.	3.8	143

3

#	Article	IF	CITATIONS
37	Kinetics of NF- \hat{I}° B nucleocytoplasmic transport probed by single-cell screening without imaging. Lab on A Chip, 2010, 10, 2911.	6.0	17
38	Quantitative analysis of protein translocations by microfluidic total internal reflection fluorescence flow cytometry. Lab on A Chip, 2010, 10, 2673.	6.0	19
39	One-step extraction of subcellular proteins from eukaryotic cells. Lab on A Chip, 2010, 10, 2046.	6.0	27
40	Role of the Protein Tyrosine Kinase Syk in Regulating Cell-Cell Adhesion and Motility in Breast Cancer Cells. Molecular Cancer Research, 2009, 7, 634-644.	3.4	61
41	Syk and pTyr'd: Signaling through the B cell antigen receptor. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1115-1127.	4.1	137
42	The microtubule-associated protein tau is phosphorylated by Syk. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 188-192.	4.1	46
43	Detection of Kinase Translocation Using Microfluidic Electroporative Flow Cytometry. Analytical Chemistry, 2008, 80, 1087-1093.	6.5	34
44	Total Internal Reflection Fluorescence Flow Cytometry. Analytical Chemistry, 2008, 80, 9840-9844.	6.5	25
45	Tyr130 phosphorylation triggers Syk release from antigen receptor by long-distance conformational uncoupling. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11760-11765.	7.1	53
46	The SH3 Domain of Lck Modulates T-Cell Receptor-Dependent Activation of Extracellular Signal-Regulated Kinase through Activation of Raf-1. Molecular and Cellular Biology, 2008, 28, 630-641.	2.3	13
47	Generation of an Analog-sensitive Syk Tyrosine Kinase for the Study of Signaling Dynamics from the B Cell Antigen Receptor. Journal of Biological Chemistry, 2007, 282, 33760-33768.	3.4	23
48	A Novel Quantitative Proteomics Strategy To Study Phosphorylation-Dependent Peptideâ^'Protein Interactions. Journal of Proteome Research, 2007, 6, 133-140.	3.7	42
49	Design and Synthesis of Phosphotyrosine Peptidomimetic Prodrugs. Journal of Medicinal Chemistry, 2006, 49, 3368-3376.	6.4	26
50	Structural Basis for the Requirement of Two Phosphotyrosine Residues in Signaling Mediated by Syk Tyrosine Kinase. Journal of Molecular Biology, 2006, 356, 1222-1236.	4.2	63
51	Nucleocytoplasmic Trafficking of the Syk Protein Tyrosine Kinase. Molecular and Cellular Biology, 2006, 26, 3478-3491.	2.3	57
52	Biological Function of the Phosphorylation of Serine 59 in the Tyrosine Kinase Lck. FASEB Journal, 2006, 20, A925.	0.5	1
53	Role of the SH3 Domain in the Trafficking and Localization of Lck in T Lymphocytes. FASEB Journal, 2006, 20, A926.	0.5	1
54	Modeling and analysis of early events in T-lymphocyte antigen-activated intracellular-signaling pathways. Journal of Computational and Applied Mathematics, 2005, 184, 320-341.	2.0	6

#	Article	IF	CITATIONS
55	Molecular Basis for a Direct Interaction between the Syk Protein-tyrosine Kinase and Phosphoinositide 3-Kinase. Journal of Biological Chemistry, 2005, 280, 1543-1551.	3.4	88
56	Distinct Roles for the Linker Region Tyrosines of Syk in FcϵRI Signaling in Primary Mast Cells. Journal of Biological Chemistry, 2005, 280, 4510-4517.	3.4	51
57	Effect of phosphorylation of ovalbumin on adsorption by aluminum-containing adjuvants and elution upon exposure to interstitial fluid. Vaccine, 2005, 23, 1502-1506.	3.8	55
58	Molecular interdiction of Src-family kinase signaling in hematopoietic cells. Oncogene, 2004, 23, 8024-8032.	5.9	22
59	Anti-sulfonylbenzoate Antibodies as a Tool for the Detection of Nucleotide-Binding Proteins for Functional Proteomics. Journal of Proteome Research, 2004, 3, 1184-1190.	3.7	8
60	New Approach for Analysis of the Phosphotyrosine Proteome and Its Application to the Chicken B Cell Line, DT40. Journal of Proteome Research, 2004, 3, 743-750.	3.7	24
61	The Lck SH3 Domain Negatively Regulates Localization to Lipid Rafts through an Interaction with c-Cbl. Journal of Biological Chemistry, 2002, 277, 5683-5691.	3.4	44
62	Characterization of the in Vivo Sites of Serine Phosphorylation on Lck Identifying Serine 59 as a Site of Mitotic Phosphorylation. Journal of Biological Chemistry, 2002, 277, 14666-14673.	3.4	17
63	Regulation of Signaling in B Cells through the Phosphorylation of Syk on Linker Region Tyrosines. Journal of Biological Chemistry, 2002, 277, 31703-31714.	3.4	75
64	PTEN controls immunoreceptor (immunoreceptor tyrosine-based activation motif) signaling and the activation of Rac. Blood, 2002, 99, 694-697.	1.4	53
65	The oxygen-substituted palmitic acid analogue, 13-oxypalmitic acid, inhibits Lck localization to lipid rafts and T cell signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1589, 140-150.	4.1	32
66	Inhibition of \hat{I}^2 2 Integrin Receptor and Syk Kinase Signaling in Monocytes by the Src Family Kinase Fgr. Immunity, 2001, 15, 507-519.	14.3	90
67	Unexpected Effects of FERM Domain Mutations on Catalytic Activity of Jak3. Molecular Cell, 2001, 8, 959-969.	9.7	127
68	Design, Synthesis, and Biological Evaluation of a Series of Lavendustin A Analogues That Inhibit EGFR and Syk Tyrosine Kinases, as Well as Tubulin Polymerization. Journal of Medicinal Chemistry, 2001, 44, 441-452.	6.4	46
69	Visualization of Syk-Antigen Receptor Interactions Using Green Fluorescent Protein: Differential Roles for Syk and Lyn in the Regulation of Receptor Capping and Internalization. Journal of Immunology, 2001, 166, 1507-1516.	0.8	98
70	Hierarchy of Protein Tyrosine Kinases in Interleukin-2 (IL-2) Signaling: Activation of Syk Depends on Jak3; However, Neither Syk nor Lck Is Required for IL-2-Mediated STAT Activation. Molecular and Cellular Biology, 2000, 20, 4371-4380.	2.3	35
71	Substrate Recognition by the Lyn Protein-tyrosine Kinase. Journal of Biological Chemistry, 2000, 275, 16174-16182.	3.4	23
72	Matrix Valency Regulates Integrin-mediated Lymphoid Adhesion via Syk Kinase. Journal of Cell Biology, 1999, 144, 777-788.	5.2	52

#	Article	IF	CITATIONS
73	Phosphorylation- and Activation-independent Association of the Tyrosine Kinase Syk and the Tyrosine Kinase Substrates Cbl and Vav with Tubulin in B-Cells. Journal of Biological Chemistry, 1999, 274, 1401-1406.	3.4	37
74	The engagement of \hat{l}^21 integrins on promonocytic cells promotes phosphorylation of Syk and formation of a protein complex containing Lyn and \hat{l}^21 integrin. European Journal of Immunology, 1999, 29, 1426-1434.	2.9	30
75	The engagement of \hat{l}^21 integrins on promonocytic cells promotes phosphorylation of Syk and formation of a protein complex containing Lyn and \hat{l}^21 integrin. European Journal of Immunology, 1999, 29, 1426-1434.	2.9	2
76	DAP12-mediated Signal Transduction in Natural Killer Cells. Journal of Biological Chemistry, 1998, 273, 32934-32942.	3.4	188
77	Structure Activity Relationship Study of Emodin Derivatives Based on the Protein-Tyrosine Kinase and Protein Kinase C Inhibitory Activities and Cytotoxicity. Natural Product Research, 1997, 10, 173-180.	0.4	8
78	Syk Activation and Dissociation from the B-cell Antigen Receptor Is Mediated by Phosphorylation of Tyrosine 130. Journal of Biological Chemistry, 1997, 272, 10377-10381.	3.4	71
79	Identification of the major sites of autophosphorylation of the murine protein-tyrosine kinase Syk. Biochimica Et Biophysica Acta - Molecular Cell Research, 1997, 1355, 177-190.	4.1	99
80	Syk, Activated by Cross-linking the B-cell Antigen Receptor, Localizes to the Cytosol Where It Interacts with and Phosphorylates α-Tubulin on Tyrosine. Journal of Biological Chemistry, 1996, 271, 4755-4762.	3.4	135
81	Activation of T Cell Raf-1 at Mitosis Requires the Protein-tyrosine Kinase Lck. Journal of Biological Chemistry, 1996, 271, 30315-30317.	3.4	25
82	The Protein-tyrosine Kinase Lck Associates with and Is Phosphorylated by Cdc2. Journal of Biological Chemistry, 1996, 271, 27517-27523.	3.4	22
83	Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature, 1995, 378, 298-302.	27.8	706
84	Signal transduction between red cells and other blood cells. Stem Cells, 1995, 13, 90-91.	3.2	26
85	Prenylated Flavanones from i> Derris laxiflora / i>. Natural Product Research, 1995, 6, 223-231.	0.4	12
86	Synthesis of a series of brominated 1-phenyl-2-pyridylethenes as inhibitors of the protein-tyrosine kinase p56lck. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 1729-1732.	2,2	3
87	Synthesis of Myristoyl CoA Analogues and Myristoyl Peptides as Inhibitors of Myristoyl CoA:Protein /V-Myristoyltransferase. Journal of Pharmaceutical Sciences, 1994, 83, 233-238.	3.3	15
88	Discovery of Naturally Occurring Antitumor Agents. , 1994, , 27-37.		0
89	Posttranslational acylation of the transferrin receptor in LSTRA cells with myristate, palmitate and stearate: Evidence for distinct acyltransferases. Lipids and Lipid Metabolism, 1994, 1213, 100-106.	2.6	9
90	The Role of Syk in Cell Signaling. Advances in Experimental Medicine and Biology, 1994, 365, 103-109.	1.6	11

#	Article	IF	Citations
91	Flavonoids from Koelreuteria henryi and Other Sources as Protein-Tyrosine Kinase Inhibitors. Journal of Natural Products, 1993, 56, 967-969.	3.0	39
92	Kinase Inhibitors from Polygonum cuspidatum. Journal of Natural Products, 1993, 56, 1805-1810.	3.0	221
93	Treatment of T cells with 2-hydroxymyristic acid inhibits the myristoylation and alters the stability of p56lck. Biochemistry, 1993, 32, 9250-9255.	2.5	51
94	Synthesis and protein-tyrosine kinase inhibitory activity of polyhydroxylated stilbene analogs of piceatannol. Journal of Medicinal Chemistry, 1993, 36, 2950-2955.	6.4	149
95	Emodin, a Protein Tyrosine Kinase Inhibitor from Polygonum cuspidatum. Journal of Natural Products, 1992, 55, 696-698.	3.0	171
96	Protein-Tyrosine Kinase Inhibition: Mechanism-Based Discovery of Antitumor Agents. Journal of Natural Products, 1992, 55, 1529-1560.	3.0	104
97	A general method for preparation of peptides biotinylated at the carboxy terminus. Analytical Biochemistry, 1992, 202, 68-70.	2.4	4
98	[33] Renaturation and assay of protein kinases after electrophoresis in sodium dodecyl sulfateâ€"polyacrylamide gels. Methods in Enzymology, 1991, 200, 417-423.	1.0	41
99	Synthesis and Evaluation of Hydroxylated Flavones and Related Compounds as Potential Inhibitors of the Protein-Tyrosine Kinase P56lck. Journal of Natural Products, 1991, 54, 1345-1352.	3.0	39
100	Identification of tyrosine 67 in bovine brain myelin basic protein as a specific phosphorylation site for thymus p56lck. Biochemical and Biophysical Research Communications, 1991, 178, 1393-1399.	2.1	17
101	Synthesis and protein-tyrosine kinase inhibitory activities of flavonoid analogs. Journal of Medicinal Chemistry, 1991, 34, 798-806.	6.4	157
102	Synthesis and evaluation of new protein-tyrosine kinase inhibitors. Part 1. pyridine-containing stilbenes and amides Bioorganic and Medicinal Chemistry Letters, 1991, 1, 211-214.	2.2	11
103	Synthesis and evaluation of new protein-tyrosine kinase inhibitors. Part 2. Phenylhydrazones Bioorganic and Medicinal Chemistry Letters, 1991, 1, 215-218.	2.2	13
104	Immunochemical detection of adenine nucleotide-binding proteins with antibodies to $5\hat{a}\in^2$ -p-fluorosulfonylbenzoyladenosine. Analytical Biochemistry, 1990, 190, 60-65.	2.4	31
105	Metabolic activation of 2-substituted derivatives of myristic acid to form potent inhibitors of myristoyl CoA:protein N-myristoyltransferase. Biochemistry, 1990, 29, 10566-10573.	2.5	85
106	Synthesis of [βâ€(4â€pyridylâ€1â€oxide)â€Lâ€alanine ⁴]â€angiotensin I as a potential suicide subst proteinâ€tyrosine kinases. International Journal of Peptide and Protein Research, 1990, 36, 538-543.	rate for	11
107	Detection of myristoyl CoA:protein N-myristoyltransferase activity by ion-exchange chromatography. Analytical Biochemistry, 1989, 181, 254-258.	2.4	11
108	S-(2-oxopentadecyl)-CoA, a nonhydrolyzable analog of myristoyl-CoA, is a potent inhibitor of myristoyl-CoA: protein N-myristoyltransferase. Journal of Medicinal Chemistry, 1989, 32, 1665-1667.	6.4	56

#	ARTICLE	IF	CITATIONS
109	Piceatannol (3,4,3′,5′-tetrahydroxy-trans-stilbene) is a naturally occurring protein-tyrosine kinase inhibitor. Biochemical and Biophysical Research Communications, 1989, 165, 241-245.	2.1	200
110	Inhibition of Proteiin-Tyrosine Kinase Activity by Flavanoids and Related Compounds. Journal of Natural Products, 1989, 52, 982-986.	3.0	113
111	Phosphorylation of glycogen synthase by a bovine thymus protein-tyrosine kinase, p40. Biochemical and Biophysical Research Communications, 1988, 155, 52-58.	2.1	9
112	Detection of a novel lymphocyte protein-tyrosine kinase by renaturation in polyacrylamide gels. Biochemical and Biophysical Research Communications, 1986, 134, 963-969.	2.1	13
113	Detection of protein kinase activity in sodium dodecyl sulfate-polyacrylamide gels. Analytical Biochemistry, 1986, 153, 151-158.	2.4	91
114	Properties of a tyrosine protein kinase from calf thymus. Response to ionic strength and divalent cations. BBA - Proteins and Proteomics, 1985, 829, 221-228.	2.1	12
115	Induction of a substrate for casein kinase II during lymphocyte mitogenesis. Biochimica Et Biophysica Acta - Molecular Cell Research, 1984, 804, 169-175.	4.1	35
116	Phosphorylation of cAMP-dependent protein kinase subunits. Advances in Enzyme Regulation, 1982, 20, 195-209.	2.6	15
117	[58] Synthesis and use of azido photoaffinity analogs of adenine and guanine nucleotides. Methods in Enzymology, 1979, 56, 642-653.	1.0	115
118	Syk. The AFCS-nature Molecule Pages, 0, , .	0.2	15