
Umberto Giostra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1628805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organised Motion and Radiative Perturbations in the Nocturnal Canopy Sublayer above an Even-Aged Pine Forest. Boundary-Layer Meteorology, 2004, 112, 129-157.	2.3	90
2	Buoyancy and The Sensible Heat Flux Budget Within Dense Canopies. Boundary-Layer Meteorology, 2006, 118, 217-240.	2.3	61
3	On the Anomalous Behaviour of Scalar Flux–Variance Similarity Functions Within the Canopy Sub-layer of a Dense Alpine Forest. Boundary-Layer Meteorology, 2008, 128, 33-57.	2.3	48
4	A wavelet analysis of lowâ€windâ€speed submeso motions in a nocturnal boundary layer. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 661-669.	2.7	37
5	Observations of submeso motions and intermittent turbulent mixing across a low level jet with a 132â€m tower. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 172-183.	2.7	37
6	Horizontal Meandering as a Distinctive Feature of the Stable Boundary Layer. Journals of the Atmospheric Sciences, 2019, 76, 3029-3046.	1.7	31
7	An efficient algorithm for scalar PDF modelling in incompressible turbulent flow; numerical analysis with evaluation of IEM and IECM micro-mixing models. Journal of Computational Physics, 2007, 223, 519-550.	3.8	29
8	Submeso Motions and Intermittent Turbulence Across a Nocturnal Low-Level Jet: A Self-Organized Criticality Analogy. Boundary-Layer Meteorology, 2019, 172, 17-43.	2.3	27
9	Interaction of Submeso Motions in the Antarctic Stable Boundary Layer. Boundary-Layer Meteorology, 2019, 171, 151-173.	2.3	27
10	A simple and fast model to compute concentration moments in a convective boundary layer. Atmospheric Environment, 2002, 36, 4717-4724.	4.1	25
11	Estimates of European emissions of methyl chloroform using a Bayesian inversion method. Atmospheric Chemistry and Physics, 2014, 14, 9755-9770.	4.9	25
12	Spectral Maxima In A Perturbed Stable Boundary Layer. Boundary-Layer Meteorology, 2001, 100, 421-437.	2.3	21
13	Investigation of Low-Frequency Perturbations Induced by a Steep Obstacle. Boundary-Layer Meteorology, 2005, 115, 27-45.	2.3	20
14	Characteristics of Gravity Waves over an Antarctic Ice Sheet during an Austral Summer. Atmosphere, 2015, 6, 1271-1289.	2.3	20
15	Probability density function modelling of concentration in and above a canopy layer. Agricultural and Forest Meteorology, 2005, 133, 153-165.	4.8	19
16	Localization of source regions of selected hydrofluorocarbons combining data collected at two European mountain stations. Science of the Total Environment, 2008, 391, 232-240.	8.0	18
17	Influence of submeso motions on scalar oscillations and surface energy balance. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 889-903.	2.7	18
18	Structure Functions In A Wall-Turbulent Shear Flow. Boundary-Layer Meteorology, 2002, 103, 337-359.	2.3	16

Umberto Giostra

#	Article	IF	CITATIONS
19	Emissions of carbon tetrachloride from Europe. Atmospheric Chemistry and Physics, 2016, 16, 12849-12859.	4.9	14
20	Model for pollen immission and transport in the evolving convective boundary layer. Grana, 1991, 30, 210-214.	0.8	9
21	Anthropogenic non-methane volatile hydrocarbons at Mt. Cimone (2165Âm a.s.l., Italy): Impact of sources and transport on atmospheric composition. Atmospheric Environment, 2016, 140, 395-403.	4.1	9
22	Non-Methane Volatile Organic Compounds in the Background Atmospheres of a Southern European Mountain Site (Mt. Cimone, Italy): Annual and Seasonal Variability. Aerosol and Air Quality Research, 2016, 16, 581-592.	2.1	9
23	Three-year observations of halocarbons at the Nepal Climate Observatory at Pyramid (NCO-P, 5079 m) Tj ETQq1	l 0.78431 4.9	4 rgBT /Ove
24	Dynamical models of pollutant transport in the atmosphere. Aerobiologia, 1994, 10, 53-57.	1.7	4
25	First Evidences of Methyl Chloride (CH3Cl) Transport from the Northern Italy Boundary Layer during Summer 2017. Atmosphere, 2020, 11, 238.	2.3	3
26	An Advanced Puff Model Based On A Mixed Eulerian/Lagrangian Approach For Turbulent Dispersion In The Convective Boundary Layer. Boundary-Layer Meteorology, 2000, 95, 319-339.	2.3	2
27	A semi-analytical model for mean concentration in a convective boundary layer. Atmospheric Environment, 2002, 36, 4707-4715.	4.1	2
28	Vertical propagation of submeso and coherent structure in a tall and dense amazon forest in different stability conditions. PART II: Coherent structures analysis. Agricultural and Forest Meteorology, 2022, 322, 108993.	4.8	2
29	Flux-gradient relationship for turbulent dispersion over complex terrain. Nonlinear Processes in Geophysics, 1995, 2, 89-100.	1.3	1