
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1628567/publications.pdf Version: 2024-02-01

LIONNEL

#	Article	IF	CITATIONS
1	High Performance Fieldâ€Effect Ammonia Sensors Based on a Structured Ultrathin Organic Semiconductor Film. Advanced Materials, 2013, 25, 3419-3425.	11.1	263
2	Photoswitches and Phototransistors from Organic Singleâ€Crystalline Subâ€micro/nanometer Ribbons. Advanced Materials, 2007, 19, 2624-2628.	11.1	262
3	An Ultra Closely Ï€â€Stacked Organic Semiconductor for High Performance Fieldâ€Effect Transistors. Advanced Materials, 2007, 19, 2613-2617.	11.1	247
4	Highâ€Performance Fieldâ€Effect Transistor Based on Dibenzo[<i>d</i> , <i>d</i> â€2]thieno[3,2â€ <i>b</i> ;4,5â€ <i>b</i> â€2]dithiophene, an Easily Synthesized Semiconductor with High Ionization Potential. Advanced Materials, 2007, 19, 3008-3011.	11.1	178
5	Enhanced thermal conductivity of polyurethane composites via engineering small/large sizes interconnected boron nitride nanosheets. Composites Science and Technology, 2019, 170, 93-100.	3.8	160
6	Highâ€Performance Airâ€Stable Bipolar Fieldâ€Effect Transistors of Organic Singleâ€Crystalline Ribbons with an Airâ€Gap Dielectric. Advanced Materials, 2008, 20, 1511-1515.	11.1	157
7	Controllable Growth and Field-Effect Property of Monolayer to Multilayer Microstripes of an Organic Semiconductor. Journal of the American Chemical Society, 2010, 132, 8807-8809.	6.6	155
8	Ultrahigh-Sensitivity Piezoresistive Pressure Sensors for Detection of Tiny Pressure. ACS Applied Materials & Interfaces, 2018, 10, 20826-20834.	4.0	142
9	A semi-interpenetrating network ionic hydrogel for strain sensing with high sensitivity, large strain range, and stable cycle performance. Chemical Engineering Journal, 2020, 385, 123912.	6.6	128
10	Polymer-Based Gate Dielectrics for Organic Field-Effect Transistors. Chemistry of Materials, 2019, 31, 2212-2240.	3.2	124
11	3D Printing Fiber Electrodes for an Allâ€Fiber Integrated Electronic Device via Hybridization of an Asymmetric Supercapacitor and a Temperature Sensor. Advanced Science, 2018, 5, 1801114.	5.6	120
12	The Semiconductor/Conductor Interface Piezoresistive Effect in an Organic Transistor for Highly Sensitive Pressure Sensors. Advanced Materials, 2019, 31, e1805630.	11.1	115
13	Solutionâ€Processing of Highâ€Purity Semiconducting Singleâ€Walled Carbon Nanotubes for Electronics Devices. Advanced Materials, 2019, 31, e1800750.	11.1	112
14	Growth of Ultrathin Organic Semiconductor Microstripes with Thickness Control in the Monolayer Precision. Angewandte Chemie - International Edition, 2013, 52, 12530-12535.	7.2	92
15	A Densely and Uniformly Packed Organic Semiconductor Based on Annelated <i>β</i> â€Trithiophenes for Highâ€Performance Thin Film Transistors. Advanced Functional Materials, 2009, 19, 272-276.	7.8	88
16	Novel crosslinkable high-k copolymer dielectrics for high-energy-density capacitors and organic field-effect transistor applications. Journal of Materials Chemistry A, 2017, 5, 20737-20746.	5.2	84
17	Surface-grafting polymers: from chemistry to organic electronics. Materials Chemistry Frontiers, 2020, 4, 692-714.	3.2	84
18	A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Research, 2021, 14, 81-90.	5.8	84

#	Article	IF	CITATIONS
19	Creating Organic Functional Materials beyond Chemical Bond Synthesis by Organic Cocrystal Engineering. Journal of the American Chemical Society, 2021, 143, 19243-19256.	6.6	84
20	Copolymer dielectrics with balanced chain-packing density and surface polarity for high-performance flexible organic electronics. Nature Communications, 2018, 9, 2339.	5.8	76
21	Molecular Orientation and Interface Compatibility for High Performance Organic Thin Film Transistor Based on Vanadyl Phthalocyanine. Journal of Physical Chemistry B, 2008, 112, 10405-10410.	1.2	70
22	Organic thin-film transistors of phthalocyanines. Pure and Applied Chemistry, 2008, 80, 2231-2240.	0.9	69
23	Dibenzothiophene derivatives as new prototype semiconductors for organic field-effect transistors. Journal of Materials Chemistry, 2007, 17, 1421.	6.7	55
24	SPECT/CT Imaging of the Novel HER2-Targeted Peptide Probe ^{99m} Tc-HYNIC-H6F in Breast Cancer Mouse Models. Journal of Nuclear Medicine, 2017, 58, 821-826.	2.8	55
25	Indium tin oxide (ITO)-free, top-illuminated, flexible perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 14017-14024.	5.2	53
26	Patterning of Polymer Electrodes by Nanoscratching. Advanced Materials, 2010, 22, 1374-1378.	11.1	51
27	The Impact of Interlayer Electronic Coupling on Charge Transport in Organic Semiconductors: A Case Study on Titanylphthalocyanine Single Crystals. Angewandte Chemie - International Edition, 2016, 55, 5206-5209.	7.2	51
28	Effectively modulating thermal activated charge transport in organic semiconductors by precise potential barrier engineering. Nature Communications, 2021, 12, 21.	5.8	51
29	Highâ€Performance and Stable Organic Transistors and Circuits with Patterned Polypyrrole Electrodes. Advanced Materials, 2012, 24, 2159-2164.	11.1	50
30	Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors. Langmuir, 2016, 32, 6246-6254.	1.6	48
31	Microarray Based Screening of Peptide Nano Probes for HER2 Positive Tumor. Analytical Chemistry, 2015, 87, 8367-8372.	3.2	45
32	Directly writing flexible temperature sensor with graphene nanoribbons for disposable healthcare devices. RSC Advances, 2020, 10, 22222-22229.	1.7	42
33	Polymer Brush and Inorganic Oxide Hybrid Nanodielectrics for High Performance Organic Transistors. Journal of Physical Chemistry B, 2010, 114, 5315-5319.	1.2	36
34	Controlling Molecular Packing for Charge Transport in Organic Thin Films. Advanced Energy Materials, 2011, 1, 188-193.	10.2	36
35	Hyaluronic Acid-Coated Silver Nanoparticles As a Nanoplatform for in Vivo Imaging Applications. ACS Applied Materials & Interfaces, 2016, 8, 25650-25653.	4.0	36
36	Bayberry tannin directed assembly of a bifunctional graphene aerogel for simultaneous solar steam generation and marine uranium extraction. Nanoscale, 2021, 13, 5419-5428.	2.8	36

#	Article	lF	CITATIONS
37	Composition, microstructure and mechanical properties of cBN-based composites sintered with AlN- Al- Ni binder. Ceramics International, 2018, 44, 16915-16922.	2.3	34
38	Breathing-effect assisted transferring large-area PEDOT:PSS to PDMS substrate with robust adhesion for stable flexible pressure sensor. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106299.	3.8	34
39	Structure Formation by Dynamic Selfâ€Assembly. Small, 2012, 8, 488-503.	5.2	33
40	Selfâ€Assembly of a Dendronâ€Attached Tetrathiafulvalene: Gel Formation and Modulation in the Presence of Chloranil and Metal Ions. Small, 2012, 8, 578-584.	5.2	30
41	Fabrication of free-standing N-doped carbon/TiO2 hierarchical nanofiber films and their application in lithium and sodium storages. Journal of Alloys and Compounds, 2017, 701, 372-379.	2.8	29
42	Synergistic Resistance Modulation toward Ultrahighly Sensitive Piezoresistive Pressure Sensors. Advanced Materials Technologies, 2020, 5, 1901084.	3.0	29
43	Revealing molecular conformation–induced stress at embedded interfaces of organic optoelectronic devices by sum frequency generation spectroscopy. Science Advances, 2021, 7, .	4.7	29
44	Battery Drivable Organic Singleâ€Crystalline Transistors Based on Surface Grafting Ultrathin Polymer Dielectric. Advanced Functional Materials, 2009, 19, 2987-2991.	7.8	28
45	Massâ€Production of Singleâ€Crystalline Device Arrays of an Organic Chargeâ€Transfer Complex for its Memory Nature. Small, 2012, 8, 557-560.	5.2	28
46	Recent progress in polymer-based infrared photodetectors. Journal of Materials Chemistry C, 2022, 10, 13312-13323.	2.7	28
47	Balancing the film strain of organic semiconductors for ultrastable organic transistors with a five-year lifetime. Nature Communications, 2022, 13, 1480.	5.8	26
48	Control over Patterning of Organic Semiconductors: Stepâ€Edgeâ€Induced Areaâ€Selective Growth. Advanced Materials, 2009, 21, 4721-4725.	11.1	25
49	Highâ€Resolution Tripleâ€Color Patterns Based on the Liquid Behavior of Organic Molecules. Small, 2011, 7, 1403-1406.	5.2	24
50	The Electrode's Effect on the Stability of Organic Transistors and Circuits. Advanced Materials, 2012, 24, 3053-3058.	11.1	24
51	Improving the Charge Injection in Organic Transistors by Covalently Linked Graphene Oxide/Metal Electrodes. Advanced Electronic Materials, 2016, 2, 1500409.	2.6	24
52	Highly sensitive airflow sensors with an ultrathin reduced graphene oxide film inspired by gas exfoliation of graphite oxide. Materials Horizons, 2017, 4, 383-388.	6.4	24
53	Lectin-Mediated pH-Sensitive Doxorubicin Prodrug for Pre-Targeted Chemotherapy of Colorectal Cancer with Enhanced Efficacy and Reduced Side Effects. Theranostics, 2019, 9, 747-760.	4.6	24
54	Intrinsic Linear Dichroism of Organic Single Crystals toward Highâ€Performance Polarization‧ensitive Photodetectors. Advanced Materials, 2022, 34, e2105665.	11.1	23

#	Article	IF	CITATIONS
55	Directly Patterning Conductive Polymer Electrodes on Organic Semiconductor via In Situ Polymerization in Microchannels for High-Performance Organic Transistors. ACS Applied Materials & Interfaces, 2021, 13, 17852-17860.	4.0	21
56	Growth of rubrene crystalline thin films using thermal annealing on DPPC LB monolayer. Organic Electronics, 2013, 14, 2534-2539.	1.4	20
57	Influence of Morphology on the Optical Properties of Self-Grown Nanowire Arrays. Journal of Physical Chemistry C, 2013, 117, 4253-4259.	1.5	20
58	Long term (1997-2014) spatial and temporal variations in nitrogen in Dongting Lake, China. PLoS ONE, 2017, 12, e0170993.	1.1	20
59	Morphology and structure features of ZnAl2O4 spinel nanoparticles prepared by matrix-isolation-assisted calcination. Materials Research Bulletin, 2015, 61, 64-69.	2.7	19
60	Facile Peeling Method as a Post-Remedy Strategy for Producing an Ultrasmooth Self-Assembled Monolayer for High-Performance Organic Transistors. Langmuir, 2016, 32, 9492-9500.	1.6	18
61	Effect of SiC whiskers on mechanical properties of thermally stable polycrystalline diamond prepared by HPHT sintering. Diamond and Related Materials, 2018, 90, 54-61.	1.8	18
62	Organic Semiconductor Crystal Engineering for Highâ€Resolution Layerâ€Controlled 2D Crystal Arrays. Advanced Materials, 2022, 34, e2104166.	11.1	18
63	Synthesis and characterization of novel poly(p-phenylenevinylene) derivatives containing phenothiazine-5-oxide and phenothiazine-5, 5-dioxide moieties. Journal of Polymer Science Part A, 2007, 45, 4291-4299.	2.5	17
64	Addressable Organic Structure by Anisotropic Wetting. Advanced Materials, 2013, 25, 2018-2023.	11.1	17
65	Eggshell-inspired membrane—shell strategy for simultaneously improving the sensitivity and detection range of strain sensors. Science China Materials, 2021, 64, 717-726.	3.5	17
66	Recent Advances of Nanospheres Lithography in Organic Electronics. Small, 2021, 17, e2100724.	5.2	17
67	Polymer-Assisted Space-Confined Strategy for the Foot-Scale Synthesis of Flexible Metal–Organic Framework-Based Composite Films. Journal of the American Chemical Society, 2021, 143, 17526-17534.	6.6	17
68	Mismatch and chemical composition analysis of vertical InxGa1â^'xAs quantum-dot arrays by transmission electron microscopy. Applied Physics Letters, 2001, 78, 3830-3832.	1.5	15
69	Mechanically tunable opacity effect in transparent bilayer film: Accurate interpretation and rational applications. Applied Materials Today, 2019, 16, 474-481.	2.3	15
70	Thermal-assisted self-assembly: a self-adaptive strategy towards large-area uniaxial organic single-crystalline microribbon arrays. Nanoscale, 2019, 11, 12781-12787.	2.8	15
71	Lowâ€voltage polymerâ€dielectricâ€based organic fieldâ€effect transistors and applications. Nano Select, 2022, 3, 20-38.	1.9	15
72	Syntheses and properties of cyano and dicyanovinyl-substituted oligomers as organic semiconductors. Synthetic Metals, 2009, 159, 1298-1301.	2.1	14

LIQIANG LI

#	Article	IF	CITATIONS
73	Wax-assisted crack-free transfer of monolayer CVD graphene: Extending from standalone to supported copper substrates. Applied Surface Science, 2019, 493, 81-86.	3.1	14
74	Molecular Composition, Grafting Density and Film Area Affect the Swelling-Induced Au–S Bond Breakage. ACS Applied Materials & Interfaces, 2014, 6, 8313-8319.	4.0	13
75	Optical properties of Cu2S nano-hollow cactus arrays with different morphologies. Journal of Alloys and Compounds, 2015, 636, 216-222.	2.8	13
76	Low Hysteresis Carbon Nanotube Transistors Constructed via a General Dry-Laminating Encapsulation Method on Diverse Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 14292-14300.	4.0	13
77	Engineering the Interfacial Materials of Organic Field-Effect Transistors for Efficient Charge Transport. Accounts of Materials Research, 2021, 2, 159-169.	5.9	13
78	Polymer Electrolyte Dielectrics Enable Efficient Exciton-Polaron Quenching in Organic Semiconductors for Photostable Organic Transistors. ACS Applied Materials & Interfaces, 2022, 14, 13584-13592.	4.0	13
79	Minimizing electrode edge in organic transistors with ultrathin reduced graphene oxide for improving charge injection efficiency. Physical Chemistry Chemical Physics, 2016, 18, 13209-13215.	1.3	12
80	Mechanically Tunable Bilayer Composite Grating for Unique Light Manipulation and Information Storage. Advanced Optical Materials, 2019, 7, 1801017.	3.6	12
81	Highly Efficient Charge Transport in a Quasiâ€Monolayer Semiconductor on Pure Polymer Dielectric. Advanced Functional Materials, 2020, 30, 1907153.	7.8	12
82	Synthesis of MgAl ₂ O ₄ spinel nanoparticles via polymer-gel and isolation-medium-assisted calcination. Journal of Materials Research, 2014, 29, 2921-2927.	1.2	11
83	Surface modification of polyethylene terephthalate films by direct fluorination. AIP Advances, 2018, 8, .	0.6	11
84	Production, quality control of next-generation PET radioisotope iodine-124 and its thyroid imaging. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 1999-2006.	0.7	11
85	Integrating Unexpected High Charge arrier Mobility and Lowâ€Threshold Lasing Action in an Organic Semiconductor. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
86	Luminescence properties of PPV-based conjugated polymers containing phenothiazine and phenothiazine.5-oxide units. Journal of Luminescence, 2007, 122-123, 714-716.	1.5	10
87	Anisotropic growth of organic semiconductor based on mechanical contrast of pre-patterned monolayer. Soft Matter, 2010, 6, 5302.	1.2	10
88	Surface Microfluidic Patterning and Transporting Organic Small Molecules. Small, 2014, 10, 2549-2552.	5.2	10
89	Solution-Processed Organic Complementary Inverters Based on TIPS-Pentacene and PDI8-CN2. IEEE Transactions on Electron Devices, 2015, 62, 4220-4224.	1.6	10
90	Solution-processable precursor route for fabricating ultrathin silica film for high performance and low voltage organic transistors. Chinese Chemical Letters, 2017, 28, 2143-2146.	4.8	10

#	Article	IF	CITATIONS
91	A Centrosymmetric Organic Semiconductor with Donor–Acceptor Interaction for Highly Photostable Organic Transistors. Advanced Functional Materials, 2022, 32, .	7.8	10
92	The Cu2S nano hollow-cactus arrays: A nanostructure with a larger specific surface area and the enhanced light absorption properties. Materials Letters, 2013, 108, 300-303.	1.3	9
93	Ultrathin silica film derived with ultraviolet irradiation of perhydropolysilazane for high performance and low voltage organic transistor and inverter. Science China Materials, 2018, 61, 1237-1242.	3.5	9
94	High-Performance Pressure Sensor for Monitoring Mechanical Vibration and Air Pressure. Polymers, 2018, 10, 587.	2.0	9
95	Copper Tetracyanoquinodimethane: From Micro/Nanostructures to Applications. Small, 2021, 17, e2004143.	5.2	9
96	Conducting polymer nanowires fabricated by edge effect of NIL. Journal of Materials Chemistry, 2012, 22, 12096.	6.7	8
97	Cu2S/CIGS core/shell nanowire arrays with epitaxial CIGS growth. Solar Energy Materials and Solar Cells, 2014, 128, 357-361.	3.0	8
98	Annealing effects on the physical and optical properties of Cu2S/CIGS core/shell nanowire arrays. Applied Physics A: Materials Science and Processing, 2015, 119, 1149-1154.	1.1	8
99	Comparison of posterior lumbar interbody fusion with transforaminal lumbar interbody fusion for treatment of recurrent lumbar disc herniation: A retrospective study. Journal of International Medical Research, 2016, 44, 1424-1429.	0.4	8
100	Microstructured Ultrathin Organic Semiconductor Film via Dip-Coating: Precise Assembly and Diverse Applications. Accounts of Materials Research, 2020, 1, 201-212.	5.9	8
101	Functionalization of Lowâ€k Polyimide Gate Dielectrics with Selfâ€Assembly Monolayer Toward Highâ€Performance Organic Fieldâ€Effect Transistors and Circuits. Advanced Materials Interfaces, 2021, 8, 2100217.	1.9	8
102	Patterning rubrene crystalline thin films for sub-micrometer channel length field-effect transistor arrays. Journal of Materials Chemistry C, 2014, 2, 9359-9363.	2.7	7
103	Effects of reagent gas composition on the morphology and optical properties of Cu2S nanowire arrays. Journal of Alloys and Compounds, 2016, 662, 263-267.	2.8	7
104	Polymer mask-weakening grain-boundary effect: towards high-performance organic thin-film transistors with mobility closing to 20 cm ² V ^{â^'1} s ^{â^'1} . Materials Chemistry Frontiers, 2020, 4, 2990-2994.	3.2	7
105	Thermally-enhanced photo-electric response of an organic semiconductor with low exciton binding energy for simultaneous and distinguishable detection of light and temperature. Science China Chemistry, 2022, 65, 145-152.	4.2	7
106	Printed thin film transistors with 108 on/off ratios and photoelectrical synergistic characteristics using isoindigo-based polymers-enriched (9,8) carbon nanotubes. Nano Research, 2022, 15, 5517-5526.	5.8	7
107	Fluorinated Dielectricsâ€Modulated Organic Phototransistors and Flexible Image Sensors. Advanced Optical Materials, 2022, 10, .	3.6	7
108	Growth of large-size-two-dimensional crystalline pentacene grains for high performance organic thin film transistors. AIP Advances, 2012, 2, 022138.	0.6	6

#	Article	IF	CITATIONS
109	Very large-bandgap insulating monolayers of ODS on SiC. Applied Surface Science, 2012, 258, 7280-7285.	3.1	6
110	Tunable Organic Heteroâ€Patterns via Molecule Diffusion Control. Small, 2014, 10, 3045-3049.	5.2	6
111	Kilohertz organic complementary inverters driven by surface-grafting conducting polypyrrole electrodes. Solid-State Electronics, 2016, 123, 51-57.	0.8	6
112	2D PbS Nanosheets with Zigzag Edges for Efficient CO 2 Photoconversion. Chemistry - A European Journal, 2020, 26, 13601-13605.	1.7	6
113	Substitution site effect of naphthyl substituted anthracene derivatives and their applications in organic optoelectronics. Journal of Materials Chemistry C, 2020, 8, 15597-15602.	2.7	6
114	Controllable and reproducible fabrication of high anisotropic organic field effect transistors. Thin Solid Films, 2008, 516, 5093-5097.	0.8	5
115	Tuning the aggregation structure and electrical property of 2.6-diphenyl-anthracene by the density of octadecyltrichlorosilane. Science China Chemistry, 2016, 59, 1645-1650.	4.2	5
116	A novel method to synthesize CaCu3Ti4O12 with acetylacetonate precursor. Materials Letters, 2016, 181, 71-73.	1.3	5
117	Protective role of microRNA‑219‑5p inhibitor against spinal cord injury via liver receptor homolog‑1/Wnt/β‑catenin signaling pathway regulation. Experimental and Therapeutic Medicine, 2018, 15, 3563-3569.	0.8	5
118	Fabrication of flexible thin organic transistors by trace water assisted transfer method. Chinese Chemical Letters, 2018, 29, 1681-1684.	4.8	5
119	Multi-species micropatterning of organic materials by liquid droplet array transfer printing. Applied Physics Letters, 2019, 114, .	1.5	5
120	<i>In situ</i> observation of organic single micro-crystal fabrication by solvent vapor annealing. Journal of Materials Chemistry C, 2021, 9, 9124-9129.	2.7	5
121	Collisionâ€induced spinâ€orbit relaxation of highly vibrationally excited NO near 1 K. Natural Sciences, 2022, 2, e20210074.	1.0	5
122	Mechanical property enhancement of cubic boron nitride composites through additive diamond. Diamond and Related Materials, 2019, 96, 20-24.	1.8	4
123	Fabrication of composites with excellent mechanical properties based on cubic boron nitride reinforced with carbon nanotubes. Ceramics International, 2019, 45, 14287-14290.	2.3	4
124	Extremely Sensitive, Allochroic Airflow Sensors by Synergistic Effect of Reversible Water Molecules Adsorption and Tunable Interlayer Distance in Graphene Oxide Film. Advanced Materials Interfaces, 2019, 6, 1900365.	1.9	4
125	Cu(In,Ga)S2 nanowire arrays: Self-templated synthesis and application for photoelectrochemical water splitting. Materials Characterization, 2021, 172, 110900.	1.9	4
126	Band‣ike Charge Transport in Smallâ€Molecule Thin Film toward Highâ€Performance Organic Phototransistors at Low Temperature. Advanced Optical Materials, 2022, 10, .	3.6	4

LIQIANG LI

#	Article	IF	CITATIONS
127	High mobility n-type organic semiconductors with tunable exciton dynamics toward photo-stable and photo-sensitive transistors. Journal of Materials Chemistry C, 2022, 10, 8874-8880.	2.7	4
128	Effect of fluorination on the surface electrical properties of epoxy resin insulation. Applied Physics A: Materials Science and Processing, 2015, 118, 757-762.	1.1	3
129	Stamp recyclable contact printing of liquid droplet matrix on various surfaces. Journal of Materials Chemistry C, 2017, 5, 10971-10975.	2.7	3
130	Synthesis and light absorption properties of copper sulfide nanowire arrays on different substrates. Physica B: Condensed Matter, 2018, 550, 26-31.	1.3	3
131	Singleâ€Walled Carbon Nanotubes: Solutionâ€Processing of Highâ€Purity Semiconducting Singleâ€Walled Carbon Nanotubes for Electronics Devices (Adv. Mater. 9/2019). Advanced Materials, 2019, 31, 1970063.	11.1	3
132	Air-stable ambipolar field-effect transistors based on copper phthalocyanine and tetracyanoquinodimethane. Research on Chemical Intermediates, 2008, 34, 147-153.	1.3	2
133	Nanospheres Lithography: Recent Advances of Nanospheres Lithography in Organic Electronics (Small) Tj ETQq1	1 0.78431 5.2	4 _{.2} gBT /Ove
134	Twist Angle-Dependent Interface Thermal Conductance in MoS2 Bilayers. Journal of Electronic Materials, 2022, 51, 2949-2955.	1.0	2
135	Thermal behavior and properties of CaCu3Ti4O12 ceramic synthesized by organo-metallic compound. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	1
136	Distinct Cu2S micro–nano structure arrays: preparation and optical properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 11758-11763.	1.1	1
137	Armadillo-inspired micro-foldable metal electrodes with a negligible resistance change under large stretchability. Journal of Materials Chemistry C, 2021, 9, 4046-4052.	2.7	1
138	The flexible sensors based on organic field-effect transistors: materials, mechanisms, and applications. Scientia Sinica Chimica, 2022, 52, 2080-2091.	0.2	1
139	Production of 62Zn radioactive nuclear beam and on-line PAC investigation of quadrupole interaction in nano-magnetic material Fe73.5Cu1Nb3Si13.5B9. Hyperfine Interactions, 2013, 222, 87-93.	0.2	0
140	EFFECTS OF DIRECT FLUORINATION ON SURFACE CONDUCTIVITY OF EPOXY RESIN INSULATORS. Surface Review and Letters, 2014, 21, 1450084.	0.5	0
141	Organic Transistors: Improving the Charge Injection in Organic Transistors by Covalently Linked Graphene Oxide/Metal Electrodes (Adv. Electron. Mater. 4/2016). Advanced Electronic Materials, 2016, 2, .	2.6	0
142	Airflow Sensors: Extremely Sensitive, Allochroic Airflow Sensors by Synergistic Effect of Reversible Water Molecules Adsorption and Tunable Interlayer Distance in Graphene Oxide Film (Adv. Mater.) Tj ETQq0 0 0 r	g BT 9/Over	lo o k 10 Tf 50
143	Materials chemistry research at Tianjin University. Materials Chemistry Frontiers, 2020, 4, 690-691.	3.2	0

¹⁴⁴In situ one-step synthesis of CuInS2 thin films with different morphologies and their optical
properties. Journal of Materials Science: Materials in Electronics, 2022, 33, 2995-3001.1.10