Paul E Verslues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/162834/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant Journal, 2006, 45, 523-539.	5.7	1,324
2	Endogenous siRNAs Derived from a Pair of Natural cis-Antisense Transcripts Regulate Salt Tolerance in Arabidopsis. Cell, 2005, 123, 1279-1291.	28.9	999
3	Identification of Two Protein Kinases Required for Abscisic Acid Regulation of Seed Germination, Root Growth, and Gene Expression in Arabidopsis. Plant Cell, 2007, 19, 485-494.	6.6	618
4	Proline Metabolism and Its Implications for Plant-Environment Interaction. The Arabidopsis Book, 2010, 8, e0140.	0.5	407
5	Essential Role of Tissue-Specific Proline Synthesis and Catabolism in Growth and Redox Balance at Low Water Potential Â. Plant Physiology, 2011, 157, 292-304.	4.8	322
6	<i>Arabidopsis</i> decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1717-1722.	7.1	291
7	Unique Drought Resistance Functions of the <i>Highly ABA-Induced</i> Clade A Protein Phosphatase 2Cs Â. Plant Physiology, 2012, 160, 379-395.	4.8	261
8	SOS2 Promotes Salt Tolerance in Part by Interacting with the Vacuolar H ⁺ -ATPase and Upregulating Its Transport Activity. Molecular and Cellular Biology, 2007, 27, 7781-7790.	2.3	234
9	Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. Journal of Experimental Botany, 2006, 57, 201-212.	4.8	225
10	Interaction of SOS2 with Nucleoside Diphosphate Kinase 2 and Catalases Reveals a Point of Connection between Salt Stress and H ₂ O ₂ Signaling in <i>Arabidopsis thaliana</i> . Molecular and Cellular Biology, 2007, 27, 7771-7780.	2.3	201
11	Root Growth and Oxygen Relations at Low Water Potentials. Impact of Oxygen Availability in Polyethylene Glycol Solutions1. Plant Physiology, 1998, 116, 1403-1412.	4.8	184
12	Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant, Cell and Environment, 2010, 33, 1838-1851.	5.7	181
13	Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Current Opinion in Plant Biology, 2011, 14, 240-245.	7.1	167
14	Dynamic proline metabolism: importance and regulation in water limited environments. Frontiers in Plant Science, 2015, 6, 484.	3.6	165
15	Intron-mediated alternative splicing of <i>Arabidopsis P5CS1</i> and its association with natural variation in proline and climate adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9197-9202.	7.1	136
16	Proline Accumulation in Maize (Zea mays L.) Primary Roots at Low Water Potentials. II. Metabolic Source of Increased Proline Deposition in the Elongation Zone1. Plant Physiology, 1999, 119, 1349-1360.	4.8	132
17	Altered ABA, proline and hydrogen peroxide in an Arabidopsis glutamate:glyoxylate aminotransferase mutant. Plant Molecular Biology, 2007, 64, 205-217.	3.9	124
18	Genome-Wide Association Mapping Combined with Reverse Genetics Identifies New Effectors of Low Water Potential-Induced Proline Accumulation in Arabidopsis Â. Plant Physiology, 2014, 164, 144-159.	4.8	114

PAUL E VERSLUES

#	Article	IF	CITATIONS
19	New developments in abscisic acid perception and metabolism. Current Opinion in Plant Biology, 2007, 10, 447-452.	7.1	103
20	Protein Phosphatase 2Cs and <i>Microtubule-Associated Stress Protein 1</i> Control Microtubule Stability, Plant Growth, and Drought Response. Plant Cell, 2017, 29, 169-191.	6.6	96
21	The ongoing search for the molecular basis of plant osmosensing. Journal of General Physiology, 2015, 145, 389-394.	1.9	93
22	Phosphoproteomics of <i>Arabidopsis</i> Highly ABA-Induced1 identifies AT-Hook–Like10 phosphorylation required for stress growth regulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2354-2363.	7.1	92
23	Role of the Putative Osmosensor Arabidopsis <i>Histidine Kinase1</i> in Dehydration Avoidance and Low-Water-Potential Response Â. Plant Physiology, 2013, 161, 942-953.	4.8	90
24	Mutation of SAD2, an importin β-domain protein in Arabidopsis, alters abscisic acid sensitivity. Plant Journal, 2006, 47, 776-787.	5.7	87
25	LWR1 and LWR2 Are Required for Osmoregulation and Osmotic Adjustment in Arabidopsis. Plant Physiology, 2004, 136, 2831-2842.	4.8	86
26	ABA and cytokinins: challenge and opportunity for plant stress research. Plant Molecular Biology, 2016, 91, 629-640.	3.9	67
27	Proline coordination with fatty acid synthesis and redox metabolism of chloroplast and mitochondria. Plant Physiology, 2016, 172, pp.01097.2016.	4.8	60
28	Natural variation identifies genes affecting drought-induced abscisic acid accumulation in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11536-11541.	7.1	53
29	Exploiting Differential Gene Expression and Epistasis to Discover Candidate Genes for Drought-Associated QTLs in <i>Arabidopsis thaliana</i> . Plant Cell, 2015, 27, 969-983.	6.6	52
30	Plastid Osmotic Stress Activates Cellular Stress Responses in Arabidopsis Â. Plant Physiology, 2014, 165, 119-128.	4.8	49
31	Stress physiology functions of the Arabidopsis histidine kinase cytokinin receptors. Physiologia Plantarum, 2015, 154, 369-380.	5.2	47
32	The flip side of phosphoâ€signalling: Regulation of protein dephosphorylation and the protein phosphatase 2Cs. Plant, Cell and Environment, 2019, 42, 2913-2930.	5.7	42
33	At14a-Like1 participates in membrane-associated mechanisms promoting growth during drought in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10545-10550.	7.1	40
34	Interactive effects of water limitation and elevated temperature on the physiology, development and fitness of diverse accessions of <i>Brachypodium distachyon</i> . New Phytologist, 2017, 214, 132-144.	7.3	39
35	Time to grow: factors that control plant growth during mild to moderate drought stress. Plant, Cell and Environment, 2017, 40, 177-179.	5.7	33
36	Quantification of Water Stress-Induced Osmotic Adjustment and Proline Accumulation for Arabidopsis thaliana Molecular Genetic Studies. Methods in Molecular Biology, 2010, 639, 301-315.	0.9	32

PAUL E VERSLUES

#	Article	IF	CITATIONS
37	Natural Variation in 9-Cis-Epoxycartenoid Dioxygenase 3 and ABA Accumulation. Plant Physiology, 2019, 179, 1620-1631.	4.8	32
38	Highly ABA-Induced 1 (HAI1)-Interacting protein HIN1 and drought acclimation-enhanced splicing efficiency at intron retention sites. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22376-22385.	7.1	30
39	Divergent low water potential response in <i>Arabidopsis thaliana</i> accessions Landsberg <i>erecta</i> and Shahdara. Plant, Cell and Environment, 2013, 36, 994-1008.	5.7	29
40	Functional characterization of an ornithine cyclodeaminase-like protein of Arabidopsis thaliana. BMC Plant Biology, 2013, 13, 182.	3.6	26
41	Comparative Analysis of Phosphoproteome Remodeling After Short Term Water Stress and ABA Treatments versus Longer Term Water Stress Acclimation. Frontiers in Plant Science, 2017, 8, 523.	3.6	18
42	Epigenetics and RNA Processing: Connections to Drought, Salt, and ABA?. Methods in Molecular Biology, 2017, 1631, 3-21.	0.9	11
43	Low Water Potential and At14a-Like1 (AFL1) Effects on Endocytosis and Actin Filament Organization. Plant Physiology, 2019, 179, 1594-1607.	4.8	10
44	Rapid Quantification of Abscisic Acid by GC-MS/MS for Studies of Abiotic Stress Response. Methods in Molecular Biology, 2017, 1631, 325-335.	0.9	10
45	Size and activity of the root meristem: A key for drought resistance and a key model of droughtâ€related signaling. Physiologia Plantarum, 2022, 174, e13622.	5.2	10
46	Spatial differences in stoichiometry of EGR phosphatase and Microtubule-associated Stress Protein 1 control root meristem activity during drought stress. Plant Cell, 2022, 34, 742-758.	6.6	8
47	Protein phosphorylation: Examining the plant CPU. Trends in Plant Science, 1996, 1, 289-291.	8.8	1