Matthew B Sullivan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1628304/matthew-b-sullivan-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

177	18,234	69	134
papers	citations	h-index	g-index
199	25,754 ext. citations	13.9	6.77
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
177	Life and death in the soil microbiome: how ecological processes influence biogeochemistry <i>Nature Reviews Microbiology</i> , 2022 ,	22.2	10
176	MetaPop: a pipeline for macro- and microdiversity analyses and visualization of microbial and viral metagenome-derived populations <i>Microbiome</i> , 2022 , 10, 49	16.6	1
175	Microbial metabolites in the marine carbon cycle <i>Nature Microbiology</i> , 2022 , 7, 508-523	26.6	2
174	Cryptic and abundant marine viruses at the evolutionary origins of Earth's RNA virome <i>Science</i> , 2022 , 376, 156-162	33.3	9
173	Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. <i>Cell Genomics</i> , 2022 , 2, 100123		6
172	The International Virus Bioinformatics Meeting 2022. Viruses, 2022, 14, 973	6.2	0
171	Coupling plant litter quantity to a novel metric for litter quality explains C storage changes in a thawing permafrost peatland. <i>Global Change Biology</i> , 2021 ,	11.4	2
170	Viral community analysis in a marine oxygen minimum zone indicates increased potential for viral manipulation of microbial physiological state. <i>ISME Journal</i> , 2021 ,	11.9	2
169	Friends or Foes? Rapid Determination of Dissimilar Colistin and Ciprofloxacin Antagonism of Phages. <i>Pharmaceuticals</i> , 2021 , 14,	5.2	2
168	Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. <i>Nature Microbiology</i> , 2021 , 6, 1561-1574	26.6	9
167	Perspective on taxonomic classification of uncultivated viruses. <i>Current Opinion in Virology</i> , 2021 , 51, 207-215	7.5	5
166	Genome-resolved viral ecology in a marine oxygen minimum zone. <i>Environmental Microbiology</i> , 2021 , 23, 2858-2874	5.2	4
165	VirION2: a short- and long-read sequencing and informatics workflow to study the genomic diversity of viruses in nature. <i>PeerJ</i> , 2021 , 9, e11088	3.1	8
164	Revisiting the rules of life for viruses of microorganisms. <i>Nature Reviews Microbiology</i> , 2021 , 19, 501-51	322.2	14
163	Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. <i>Communications Biology</i> , 2021 , 4, 604	6.7	17
162	Viruses infecting a warm water picoeukaryote shed light on spatial co-occurrence dynamics of marine viruses and their hosts. <i>ISME Journal</i> , 2021 , 15, 3129-3147	11.9	2
161	Improving Phage-Biofilm In Vitro Experimentation. Viruses, 2021, 13,	6.2	5

(2020-2021)

160	Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation. <i>PeerJ</i> , 2021 , 9, e11447	3.1	7
159	Spinal Cord Injury Changes the Structure and Functional Potential of Gut Bacterial and Viral Communities. <i>MSystems</i> , 2021 , 6,	7.6	6
158	Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages. <i>Nature Communications</i> , 2021 , 12, 3503	17.4	12
157	efam: an expanded, metaproteome-supported HMM profile database of viral protein families. <i>Bioinformatics</i> , 2021 ,	7.2	6
156	Divergent Genomic Adaptations in the Microbiomes of Arctic Subzero Sea-Ice and Cryopeg Brines. <i>Frontiers in Microbiology</i> , 2021 , 12, 701186	5.7	1
155	Glacier ice archives nearly 15,000-year-old microbes and phages. <i>Microbiome</i> , 2021 , 9, 160	16.6	7
154	Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. <i>ISME Journal</i> , 2021 , 15, 981-998	11.9	13
153	Eukaryotic virus composition can predict the efficiency of carbon export in the global ocean. <i>IScience</i> , 2021 , 24, 102002	6.1	17
152	Interaction dynamics and virus-host range for estuarine actinophages captured by epicPCR. <i>Nature Microbiology</i> , 2021 , 6, 630-642	26.6	10
151	VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. <i>Microbiome</i> , 2021 , 9, 37	16.6	69
150	Bacterial Viruses Subcommittee and Archaeal Viruses Subcommittee of the ICTV: update of taxonomy changes in 2021. <i>Archives of Virology</i> , 2021 , 166, 3239-3244	2.6	5
149	Environmental vulnerability of the global ocean epipelagic plankton community interactome. <i>Science Advances</i> , 2021 , 7,	14.3	5
148	Macroscale patterns of oceanic zooplankton composition and size structure. <i>Scientific Reports</i> , 2021 , 11, 15714	4.9	2
147	Diel cycle of sea spray aerosol concentration. <i>Nature Communications</i> , 2021 , 12, 5476	17.4	2
146	High-throughput identification of viral termini and packaging mechanisms in virome datasets using PhageTermVirome. <i>Scientific Reports</i> , 2021 , 11, 18319	4.9	0
145	iVirus 2.0: Cyberinfrastructure-supported tools and data to power DNA virus ecology. <i>ISME Communications</i> , 2021 , 1,		1
144	Tara Oceans: towards global ocean ecosystems biology. <i>Nature Reviews Microbiology</i> , 2020 , 18, 428-445	22.2	60
143	Taxonomy of prokaryotic viruses: 2018-2019 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. <i>Archives of Virology</i> , 2020 , 165, 1253-1260	2.6	66

142	Unveiling Infection Strategies across Diverse Marine Phage⊞ost Systems. <i>Proceedings (mdpi</i>), 2020 , 50, 99	0.3	
141	Viral Ecogenomics of Arctic Cryopeg Brine and Sea Ice. <i>MSystems</i> , 2020 , 5,	7.6	12
140	Discovery of several thousand highly diverse circular DNA viruses. <i>ELife</i> , 2020 , 9,	8.9	65
139	Author response: Discovery of several thousand highly diverse circular DNA viruses 2020,		5
138	Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. <i>Nature Reviews Microbiology</i> , 2020 , 18, 21-34	22.2	97
137	The spinal cord-gut-immune axis as a master regulator of health and neurological function after spinal cord injury. <i>Experimental Neurology</i> , 2020 , 323, 113085	5.7	26
136	Phage-specific metabolic reprogramming of virocells. <i>ISME Journal</i> , 2020 , 14, 881-895	11.9	56
135	The Gut Virome Database Reveals Age-Dependent Patterns of Virome Diversity in the Human Gut. <i>Cell Host and Microbe</i> , 2020 , 28, 724-740.e8	23.4	125
134	DRAM for distilling microbial metabolism to automate the curation of microbiome function. <i>Nucleic Acids Research</i> , 2020 , 48, 8883-8900	20.1	77
133	Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. <i>ISME Journal</i> , 2020 , 14, 3079-3092	11.9	12
132	Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions. <i>Nature Ecology and Evolution</i> , 2020 , 4, 1639-1649	12.3	25
131	Analysis of Spounaviruses as a Case Study for the Overdue Reclassification of Tailed Phages. <i>Systematic Biology</i> , 2020 , 69, 110-123	8.4	56
130	Future Ocean Observations to Connect Climate, Fisheries and Marine Ecosystems. <i>Frontiers in Marine Science</i> , 2019 , 6,	4.5	17
129	The Tara Pacific expedition-A pan-ecosystemic approach of the "-omics" complexity of coral reef holobionts across the Pacific Ocean. <i>PLoS Biology</i> , 2019 , 17, e3000483	9.7	17
128	ScientistsTwarning to humanity: microorganisms and climate change. <i>Nature Reviews Microbiology</i> , 2019 , 17, 569-586	22.2	516
127	Soil Aggregate Microbial Communities: Towards Understanding Microbiome Interactions at Biologically Relevant Scales. <i>Applied and Environmental Microbiology</i> , 2019 , 85,	4.8	126
126	Marine DNA Viral Macro- and Microdiversity from Pole to Pole. <i>Cell</i> , 2019 , 177, 1109-1123.e14	56.2	256
125	Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. <i>Nature Biotechnology</i> , 2019 , 37, 632-639	44.5	201

(2018-2019)

124	Community-Level Responses to Iron Availability in Open Ocean Plankton Ecosystems. <i>Global Biogeochemical Cycles</i> , 2019 , 33, 391-419	5.9	42
123	Closely related viruses of the marine picoeukaryotic alga Ostreococcus lucimarinus exhibit different ecological strategies. <i>Environmental Microbiology</i> , 2019 , 21, 2148-2170	5.2	11
122	Numerous cultivated and uncultivated viruses encode ribosomal proteins. <i>Nature Communications</i> , 2019 , 10, 752	17.4	49
121	Prevalence of viral photosynthesis genes along a freshwater to saltwater transect in Southeast USA. <i>Environmental Microbiology Reports</i> , 2019 , 11, 672-689	3.7	10
120	Gene Expression Changes and Community Turnover Differentially Shape the Global Ocean Metatranscriptome. <i>Cell</i> , 2019 , 179, 1068-1083.e21	56.2	113
119	Global Trends in Marine Plankton Diversity across Kingdoms of Life. <i>Cell</i> , 2019 , 179, 1084-1097.e21	56.2	108
118	Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. <i>PeerJ</i> , 2019 , 7, e6800	3.1	68
117	Optimizing genome assembly from PCR-amplified metagenomes. <i>PeerJ</i> , 2019 , 7, e6902	3.1	14
116	Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils. <i>PeerJ</i> , 2019 , 7, e7265	3.1	26
115	Minimum Information about an Uncultivated Virus Genome (MIUViG). <i>Nature Biotechnology</i> , 2019 , 37, 29-37	44.5	180
114	Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. <i>Nature Microbiology</i> , 2019 , 4, 352-361	26.6	49
113	Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. <i>Nature Communications</i> , 2018 , 9, 310	17.4	55
112	Taxonomy of prokaryotic viruses: 2017 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. <i>Archives of Virology</i> , 2018 , 163, 1125-1129	2.6	62
111	A global ocean atlas of eukaryotic genes. <i>Nature Communications</i> , 2018 , 9, 373	17.4	168
110	Multiple mechanisms drive phage infection efficiency in nearly identical hosts. <i>ISME Journal</i> , 2018 , 12, 1605-1618	11.9	28
109	Clean Low-Biomass Procedures and Their Application to Ancient Ice Core Microorganisms. <i>Frontiers in Microbiology</i> , 2018 , 9, 1094	5.7	12
108	Host-linked soil viral ecology along a permafrost thaw gradient. <i>Nature Microbiology</i> , 2018 , 3, 870-880	26.6	182
107	Iron Chloride Flocculation of Bacteriophages from Seawater. <i>Methods in Molecular Biology</i> , 2018 , 1681, 49-57	1.4	11

106	Whole-Genome Sequences of Phages p000v and p000y, Which Infect the Bacterial Pathogen Shiga-Toxigenic Escherichia coli. <i>Microbiology Resource Announcements</i> , 2018 , 7,	1.3	2
105	Fighting Fire with Fire: Phage Potential for the Treatment of O157 Infection. <i>Antibiotics</i> , 2018 , 7,	4.9	7
104	Soil Viruses Are Underexplored Players in Ecosystem Carbon Processing. <i>MSystems</i> , 2018 , 3,	7.6	99
103	Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem. <i>Nature Microbiology</i> , 2018 , 3, 1274-1284	26.6	70
102	Smoking is associated with quantifiable differences in the human lung DNA virome and metabolome. <i>Respiratory Research</i> , 2018 , 19, 174	7.3	20
101	Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. <i>ISME Journal</i> , 2017 , 11, 237-247	11.9	189
100	Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus. <i>ISME Journal</i> , 2017 , 11, 284-295	11.9	33
99	Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. <i>Microbiome</i> , 2017 , 5, 10	16.6	595
98	Modelling plankton ecosystems in the meta-omics era. Are we ready?. <i>Marine Genomics</i> , 2017 , 32, 1-17	1.9	23
97	Single-virus genomics reveals hidden cosmopolitan and abundant viruses. <i>Nature Communications</i> , 2017 , 8, 15892	17.4	104
96	Visualizing Adsorption of Cyanophage P-SSP7 onto Marine Prochlorococcus. <i>Scientific Reports</i> , 2017 , 7, 44176	4.9	15
95	Lysogeny in nature: mechanisms, impact and ecology of temperate phages. <i>ISME Journal</i> , 2017 , 11, 151	1 ₁ 1530	272
94	Consensus statement: Virus taxonomy in the age of metagenomics. <i>Nature Reviews Microbiology</i> , 2017 , 15, 161-168	22.2	375
93	Ecogenomics of virophages and their giant virus hosts assessed through time series metagenomics. <i>Nature Communications</i> , 2017 , 8, 858	17.4	62
92	Dietary energy drives the dynamic response of bovine rumen viral communities. <i>Microbiome</i> , 2017 , 5, 155	16.6	38
91	IMG/VR: a database of cultured and uncultured DNA Viruses and retroviruses. <i>Nucleic Acids Research</i> , 2017 , 45, D457-D465	20.1	115
90	Environmental Viral Genomes Shed New Light on Virus-Host Interactions in the Ocean. <i>MSphere</i> , 2017 , 2,	5	72
89	Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. <i>Scientific Data</i> , 2017 , 4, 170093	8.2	89

(2015-2017)

88	Taxonomy of prokaryotic viruses: 2016 update from the ICTV bacterial and archaeal viruses subcommittee. <i>Archives of Virology</i> , 2017 , 162, 1153-1157	2.6	38
87	On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires. <i>MBio</i> , 2017 , 8,	7.8	34
86	iVirus: facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure. <i>ISME Journal</i> , 2017 , 11, 7-14	11.9	8o
85	Viral ecology comes of age. <i>Environmental Microbiology Reports</i> , 2017 , 9, 33-35	3.7	45
84	Comparative Omics and Trait Analyses of Marine Phages Advance the Phage OTU Concept. <i>Frontiers in Microbiology</i> , 2017 , 8, 1241	5.7	27
83	vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect and. <i>PeerJ</i> , 2017 , 5, e3243	3.1	128
82	Putative archaeal viruses from the mesopelagic ocean. <i>PeerJ</i> , 2017 , 5, e3428	3.1	36
81	Benchmarking viromics: an evaluation of metagenome-enabled estimates of viral community composition and diversity. <i>PeerJ</i> , 2017 , 5, e3817	3.1	124
80	Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. <i>ISME Journal</i> , 2016 , 10, 437-49	11.9	168
79	Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. <i>BMC Genomics</i> , 2016 , 17, 930	4.5	75
78	Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. <i>Nature</i> , 2016 , 537, 689-693	50.4	400
77	Illuminating structural proteins in viral "dark matter" with metaproteomics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 2436-41	11.5	49
76	Plankton networks driving carbon export in the oligotrophic ocean. <i>Nature</i> , 2016 , 532, 465-470	50.4	392
75	Six Pseudoalteromonas Strains Isolated from Surface Waters of Kabeltonne, Offshore Helgoland, North Sea. <i>Genome Announcements</i> , 2016 , 4,		6
74	Optimization of viral resuspension methods for carbon-rich soils along a permafrost thaw gradient. <i>PeerJ</i> , 2016 , 4, e1999	3.1	32
73	Towards quantitative viromics for both double-stranded and single-stranded DNA viruses. <i>PeerJ</i> , 2016 , 4, e2777	3.1	108
72	Large-scale maps of variable infection efficiencies in aquatic Bacteroidetes phage-host model systems. <i>Environmental Microbiology</i> , 2016 , 18, 3949-3961	5.2	18
71	Depth-stratified functional and taxonomic niche specialization in the ToreTand f lexibleTPacific Ocean Virome. <i>ISME Journal</i> , 2015 , 9, 472-84	11.9	124

70	Viromes, not gene markers, for studying double-stranded DNA virus communities. <i>Journal of Virology</i> , 2015 , 89, 2459-61	6.6	41
69	VirSorter: mining viral signal from microbial genomic data. <i>PeerJ</i> , 2015 , 3, e985	3.1	563
68	Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. <i>ISME Journal</i> , 2015 , 9, 2386-99	11.9	153
67	Genomic characteristics and environmental distributions of the uncultivated Far-T4 phages. <i>Frontiers in Microbiology</i> , 2015 , 6, 199	5.7	15
66	Closing the gaps on the viral photosystem-I psaDCAB gene organization. <i>Environmental Microbiology</i> , 2015 , 17, 5100-8	5.2	6
65	Variably lytic infection dynamics of large Bacteroidetes podovirus phi38:1 against two Cellulophaga baltica host strains. <i>Environmental Microbiology</i> , 2015 , 17, 4659-71	5.2	20
64	Life-style and genome structure of marine Pseudoalteromonas siphovirus B8b isolated from the northwestern Mediterranean Sea. <i>PLoS ONE</i> , 2015 , 10, e0114829	3.7	10
63	Viral dark matter and virus-host interactions resolved from publicly available microbial genomes. <i>ELife</i> , 2015 , 4,	8.9	274
62	An inexpensive, accurate, and precise wet-mount method for enumerating aquatic viruses. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 2995-3000	4.8	16
61	Ocean plankton. Determinants of community structure in the global plankton interactome. <i>Science</i> , 2015 , 348, 1262073	33.3	496
60	Ocean plankton. Patterns and ecological drivers of ocean viral communities. <i>Science</i> , 2015 , 348, 126149	9833.3	421
59	Ocean plankton. Structure and function of the global ocean microbiome. <i>Science</i> , 2015 , 348, 1261359	33.3	1261
58	Ocean plankton. Environmental characteristics of Agulhas rings affect interocean plankton transport. <i>Science</i> , 2015 , 348, 1261447	33.3	100
57	Rising to the challenge: accelerated pace of discovery transforms marine virology. <i>Nature Reviews Microbiology</i> , 2015 , 13, 147-59	22.2	205
56	Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. <i>Nature</i> , 2014 , 513, 242-5	50.4	137
55	Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 10714-9	11.5	79
54	Emerging methods to study bacteriophage infection at the single-cell level. <i>Frontiers in Microbiology</i> , 2014 , 5, 724	5.7	28
53	Contrasting genomic patterns and infection strategies of two co-existing Bacteroidetes podovirus genera. <i>Environmental Microbiology</i> , 2014 , 16, 2501-13	5.2	28

(2011-2014)

52	Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell-and meta-genomics. <i>ELife</i> , 2014 , 3, e03125	8.9	141
51	Phage-bacteria infection networks. <i>Trends in Microbiology</i> , 2013 , 21, 82-91	12.4	200
50	Sequencing platform and library preparation choices impact viral metagenomes. <i>BMC Genomics</i> , 2013 , 14, 320	4.5	77
49	The global virome: not as big as we thought?. Current Opinion in Virology, 2013, 3, 566-71	7.5	51
48	Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. <i>Environmental Microbiology</i> , 2013 , 15, 2306-18	5.2	95
47	Preparation of metagenomic libraries from naturally occurring marine viruses. <i>Methods in Enzymology</i> , 2013 , 531, 143-65	1.7	26
46	Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics. <i>Environmental Microbiology</i> , 2013 , 15, 1428-40	5.2	122
45	Abundant SAR11 viruses in the ocean. <i>Nature</i> , 2013 , 494, 357-60	50.4	238
44	Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. <i>ISME Journal</i> , 2013 , 7, 1738-51	11.9	106
43	Twelve previously unknown phage genera are ubiquitous in global oceans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 12798-803	11.5	140
42	Metabolic reprogramming by viruses in the sunlit and dark ocean. <i>Genome Biology</i> , 2013 , 14, R123	18.3	137
41	Contrasting Life Strategies of Viruses That Infect Photo- and Heterotrophic Bacteria, as Revealed by Viral Tagging. <i>MBio</i> , 2013 , 4,	7.8	3
40	The Pacific Ocean virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. <i>PLoS ONE</i> , 2013 , 8, e57355	3.7	256
39	Phylogenomics of T4 cyanophages: lateral gene transfer in the TcoreTand origins of host genes. <i>Environmental Microbiology</i> , 2012 , 14, 2113-26	5.2	84
38	Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method. <i>Environmental Microbiology</i> , 2012 , 14, 2526-37	5.2	122
37	Ocean viruses: rigorously evaluating the metagenomic sample-to-sequence pipeline. <i>Virology</i> , 2012 , 434, 181-6	3.6	72
36	Contrasting life strategies of viruses that infect photo- and heterotrophic bacteria, as revealed by viral tagging. <i>MBio</i> , 2012 , 3,	7.8	72
35	A simple and efficient method for concentration of ocean viruses by chemical flocculation. <i>Environmental Microbiology Reports</i> , 2011 , 3, 195-202	3.7	176

34	A simple and efficient method for concentration of ocean viruses by chemical flocculation. <i>Environmental Microbiology Reports</i> , 2011 , 3, 809-809	3.7	5
33	Structural changes in a marine podovirus associated with release of its genome into Prochlorococcus. <i>Nature Structural and Molecular Biology</i> , 2010 , 17, 830-6	17.6	121
32	Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. <i>Environmental Microbiology</i> , 2010 , 12, 3035-56	5.2	237
31	The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial TmobilomeT <i>Environmental Microbiology</i> , 2009 , 11, 2935-51	5.2	97
30	Portal protein diversity and phage ecology. <i>Environmental Microbiology</i> , 2008 , 10, 2810-23	5.2	87
29	Efficient phage-mediated pigment biosynthesis in oceanic cyanobacteria. Current Biology, 2008, 18, 442	2-8 .3	128
28	Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. <i>Nature</i> , 2007 , 449, 83-6	50.4	248
27	Community genomics among stratified microbial assemblages in the ocean's interior. <i>Science</i> , 2006 , 311, 496-503	33.3	1055
26	Genomic islands and the ecology and evolution of Prochlorococcus. <i>Science</i> , 2006 , 311, 1768-70	33.3	362
25	Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. <i>PLoS Biology</i> , 2006 , 4, e234	9.7	326
24	Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. <i>PLoS Biology</i> , 2005 , 3, e144	9.7	411
23	Transfer of photosynthesis genes to and from Prochlorococcus viruses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 11013-8	11.5	406
22	Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. <i>Nature</i> , 2003 , 424, 1047-51	50.4	393
21	Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. <i>Nature</i> , 2003 , 424, 1042-7	50.4	904
20	The IsoGenie database: an interdisciplinary data management solution for ecosystems biology and environmental research. <i>PeerJ</i> ,8, e9467	3.1	4
19	In vitro analysis of colistin and ciprofloxacin antagonism of Pseudomonas aeruginosa phage PEV2 infection activities		1
18	Glacier ice archives fifteen-thousand-year-old viruses		9
17	DRAM for distilling microbial metabolism to automate the curation of microbiome function		6

LIST OF PUBLICATIONS

16	Genome-resolved viral ecology in a marine oxygen minimum zone (OMZ)		1
15	Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages		6
14	VirION2: a short- and long-read sequencing and informatics workflow to study the genomic diversity of viruses in nature		2
13	MetaPop: A pipeline for macro- and micro-diversity analyses and visualization of microbial and viral metagenome-derived populations		3
12	Novel integrative elements and genomic plasticity in ocean ecosystems		7
11	Analysis of Spounaviruses as a Case Study for the Overdue Reclassification of Tailed Bacteriophages		8
10	Soil viruses are underexplored players in ecosystem carbon processing		3
9	Long-read viral metagenomics enables capture of abundant and microdiverse viral populations and their niche-defining genomic islands		3
8	Gene sharing networks to automate genome-based prokaryotic viral taxonomy		9
7	Discovery of several thousand highly diverse circular DNA viruses		5
6	Metabolic Architecture of the Deep Ocean Microbiome		17
5	The human gut virome database		27
4	Eukaryotic virus composition can predict the efficiency of carbon export in the global ocean		5
3	Genomic evidence for global ocean plankton biogeography shaped by large-scale current systems		20
2	Uncharted biosynthetic potential of the ocean microbiome		6
1	Biosynthetic potential of the global ocean microbiome. <i>Nature</i> ,	50.4	6