
roberto Lande

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1628128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complementary Effects of Carbamylated and Citrullinated LL37 in Autoimmunity and Inflammation in Systemic Lupus Erythematosus. International Journal of Molecular Sciences, 2021, 22, 1650.	1.8	11
2	AB013. CXCL4-DNA immune complexes drive inflammation in systemic sclerosis by amplifying TLR9-mediated interferon- \hat{I}_{\pm} production. Annals of Translational Medicine, 2021, 9, AB013-AB013.	0.7	0
3	New Autoantibody Specificities in Systemic Sclerosis and Very Early Systemic Sclerosis. Antibodies, 2021, 10, 12.	1.2	8
4	Toll-like receptors in mediating pathogenesis in systemic sclerosis. Clinical and Experimental Immunology, 2020, 201, 14-24.	1.1	39
5	Anti-CXCL4 Antibody Reactivity Is Present in Systemic Sclerosis (SSc) and Correlates with the SSc Type I Interferon Signature. International Journal of Molecular Sciences, 2020, 21, 5102.	1.8	26
6	Generation of Monoclonal Antibodies Specific for Native LL37 and Citrullinated LL37 That Discriminate the Two LL37 Forms in the Skin and Circulation of Cutaneous/Systemic Lupus Erythematosus and Rheumatoid Arthritis Patients. Antibodies, 2020, 9, 14.	1.2	5
7	Native/citrullinated LL37-specific T-cells help autoantibody production in Systemic Lupus Erythematosus. Scientific Reports, 2020, 10, 5851.	1.6	27
8	RB139, RB140, RB141 and RB142 antibodies recognize human citrullinated LL37 by ELISA. Antibody Reports, 2020, 3, e189.	0.0	0
9	RB137 and RB138 antibodies recognize human cathelicidin LL37 by ELISA. Antibody Reports, 2020, 3, e188.	0.0	1
10	Monoclonal antibodies RB139 and RB142 recognize citrullinated LL37 by immunofluorescence in histological sections in Systemic lupus erythematosus (SLE) and Rheumatoid arthritis (RA). Antibody Reports, 2020, 3, e236.	0.0	0
11	RB137 recognizes LL37 in neutrophil-extracellular trap-like (NET) structures in systemic lupus erythematosus and rheumatoid arthritis inflamed tissues by immunofluorescence in histological sections. Antibody Reports, 2020, 3, e235.	0.0	0
12	CXCL4 assembles DNA into liquid crystalline complexes to amplify TLR9-mediated interferon- $\hat{l}\pm$ production in systemic sclerosis. Nature Communications, 2019, 10, 1731.	5.8	90
13	Netting Neutrophils Activate Autoreactive B Cells in Lupus. Journal of Immunology, 2018, 200, 3364-3371.	0.4	124
14	CD3+CD4+LAP+Foxp3-Regulatory Cells of the Colonic Lamina Propria Limit Disease Extension in Ulcerative Colitis. Frontiers in Immunology, 2018, 9, 2511.	2.2	6
15	Anti-LL37 Antibodies Are Present in Psoriatic Arthritis (PsA) Patients: New Biomarkers in PsA. Frontiers in Immunology, 2018, 9, 1936.	2.2	71
16	A review of immune amplification via ligand clustering by self-assembled liquid–crystalline DNA complexes. Advances in Colloid and Interface Science, 2016, 232, 17-24.	7.0	18
17	Liquid-crystalline ordering of antimicrobial peptide–DNA complexes controls TLR9 activation. Nature Materials, 2015, 14, 696-700.	13.3	75
18	Cationic antimicrobial peptides in psoriatic skin cooperate to break innate tolerance to selfâ€DNA. European Journal of Immunology, 2015, 45, 203-213.	1.6	129

ROBERTO LANDE

#	Article	IF	CITATIONS
19	The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nature Communications, 2014, 5, 5621.	5.8	427
20	Role of Defensins and Cathelicidin LL37 in Auto-Immune and Auto- Inflammatory Diseases. Current Pharmaceutical Biotechnology, 2012, 13, 1882-1897.	0.9	51
21	Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL37. Blood, 2012, 120, 3699-3707.	0.6	150
22	Neutrophils Activate Plasmacytoid Dendritic Cells by Releasing Self-DNA–Peptide Complexes in Systemic Lupus Erythematosus. Science Translational Medicine, 2011, 3, 73ra19.	5.8	1,080
23	Overlapping, Additive and Counterregulatory Effects of Type II and I Interferons on Myeloid Dendritic Cell Functions. Scientific World Journal, The, 2011, 11, 2071-2090.	0.8	7
24	Plasmacytoid dendritic cells: key players in the initiation and regulation of immune responses. Annals of the New York Academy of Sciences, 2010, 1183, 89-103.	1.8	169
25	Generation of IL-23 Producing Dendritic Cells (DCs) by Airborne Fungi Regulates Fungal Pathogenicity via the Induction of TH-17 Responses. PLoS ONE, 2010, 5, e12955.	1.1	105
26	Self-RNA–antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. Journal of Experimental Medicine, 2009, 206, 1983-1994.	4.2	613
27	Antimicrobial peptides and self-DNA in autoimmune skin inflammation. Current Opinion in Immunology, 2008, 20, 401-407.	2.4	171
28	Plasmacytoid Dendritic Cells in Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2008, 67, 388-401.	0.9	110
29	NF-κB is required for STAT-4 expression during dendritic cell maturation. Journal of Leukocyte Biology, 2007, 81, 355-363.	1.5	33
30	Sensitization to TLR7 Agonist in IFN-β-Preactivated Dendritic Cells. Journal of Immunology, 2007, 178, 6208-6216.	0.4	55
31	Plasmacytoid dendritic cells prime IL-10–producing T regulatory cells by inducible costimulator ligand. Journal of Experimental Medicine, 2007, 204, 105-115.	4.2	569
32	IFNâ€Î² modulates the response to TLR stimulation in human DC: Involvement of IFN regulatory factorâ€1 (IRFâ€1) in ILâ€27 gene expression. European Journal of Immunology, 2007, 37, 3499-3508.	1.6	83
33	In vitro infection of human dendritic cells by Aspergillus fumigatus conidia triggers the secretion of chemokines for neutrophil and Th1 lymphocyte recruitment. Microbes and Infection, 2007, 9, 971-980.	1.0	39
34	Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature, 2007, 449, 564-569.	13.7	1,684
35	Human Dendritic Cells following Aspergillus fumigatus Infection Express the CCR7 Receptor and a Differential Pattern of Interleukin-12 (IL-12), IL-23, and IL-27 Cytokines, Which Lead to a Th1 Response. Infection and Immunity, 2006, 74, 1480-1489.	1.0	74
36	Differential responsiveness to IFN-Â and IFN-Â of human mature DC through modulation of IFNAR expression. Journal of Leukocyte Biology, 2006, 79, 1286-1294.	1.5	67

ROBERTO LANDE

#	Article	IF	CITATIONS
37	Infection of Human Dendritic Cells with a Mycobacterium tuberculosis sigE Mutant Stimulates Production of High Levels of Interleukin-10 but Low Levels of CXCL10: Impact on the T-Cell Response. Infection and Immunity, 2006, 74, 3296-3304.	1.0	24
38	Astrocytes Produce Dendritic Cell-Attracting Chemokines In Vitro and in Multiple Sclerosis Lesions. Journal of Neuropathology and Experimental Neurology, 2005, 64, 706-715.	0.9	149
39	Characterization and Recruitment of Plasmacytoid Dendritic Cells in Synovial Fluid and Tissue of Patients with Chronic Inflammatory Arthritis. Journal of Immunology, 2004, 173, 2815-2824.	0.4	135
40	Viral infection and Toll-like receptor agonists induce a differential expression of type I and λ interferons in human plasmacytoid and monocyte-derived dendritic cells. European Journal of Immunology, 2004, 34, 796-805.	1.6	434
41	Lactobacilli and streptococci induce inflammatory chemokine production in human macrophages that stimulates Th1 cell chemotaxis. Journal of Leukocyte Biology, 2003, 74, 395-402.	1.5	84
42	IFN-αβ Released by <i>Mycobacterium tuberculosis</i> -Infected Human Dendritic Cells Induces the Expression of CXCL10: Selective Recruitment of NK and Activated T Cells. Journal of Immunology, 2003, 170, 1174-1182.	0.4	143
43	T-Cell Immune Response Assessment as a Complement to Serology and Intranasal Protection Assays in Determining the Protective Immunity Induced by Acellular Pertussis Vaccines in Mice. Vaccine Journal, 2003, 10, 637-642.	3.2	6
44	Native and Genetically Inactivated Pertussis Toxins Induce Human Dendritic Cell Maturation and Synergize with Lipopolysaccharide in Promoting T Helper Type 1 Responses. Journal of Infectious Diseases, 2002, 186, 351-360.	1.9	72
45	CD38 ligation plays a direct role in the induction of IL-1β, IL-6, and IL-10 secretion in resting human monocytes. Cellular Immunology, 2002, 220, 30-38.	1.4	40
46	Functional topography of discrete domains of human CD38. Tissue Antigens, 2000, 56, 539-547.	1.0	24
47	Cellâ€Mediated Immunity and Antibody Responses toBordetella pertussisAntigens in Children with a History of Pertussis Infection and in Recipients of an Acellular Pertussis Vaccine. Journal of Infectious Diseases, 2000, 181, 1989-1995.	1.9	72
48	Immunogenicity Issues in the Quality Control of the New Acellular Pertussis Vaccines. Biologicals, 1999, 27, 119-121.	0.5	5
49	Cell-Mediated Immune Responses in Four-Year-Old Children after Primary Immunization with Acellular Pertussis Vaccines. Infection and Immunity, 1999, 67, 4064-4071.	1.0	92
50	Prevalence of Markers of Exposure toBordetella pertussisAmong Italian Young Adults. Clinical Infectious Diseases, 1998, 26, 297-302.	2.9	25
51	Cell-Mediated Immune Response of Healthy Adults to Bordetella pertussis Vaccine Antigens. Journal of Infectious Diseases, 1998, 178, 466-470.	1.9	33
52	Cell-mediated and Antibody Responses to Bordetella pertussis Antigens in Children Vaccinated With Acellular or Whole-cell Pertussis Vaccines. JAMA Pediatrics, 1997, 151, 283.	3.6	80
53	Additional copies of the mitochondrial Ef-Tu and aspartyl-tRNA synthetase genes can compensate for a mutation affecting the maturation of the mitochondrial tRNA Asp. Current Genetics, 1997, 31, 494-496.	0.8	30
54	Vaccine- and antigen-dependent type 1 and type 2 cytokine induction after primary vaccination of infants with whole-cell or acellular pertussis vaccines. Infection and Immunity, 1997, 65, 2168-2174.	1.0	194

#	Article	IF	CITATIONS
55	T-cell dysfunctions in hu-PBL-SCID mice infected with human immunodeficiency virus (HIV) shortly after reconstitution: in vivo effects of HIV on highly activated human immune cells. Journal of Virology, 1996, 70, 7958-7964.	1.5	49
56	Defective Expression of Interferon-γ, Granulocyte-Macrophage Colony-Stimulating Factor, Tumor Necrosis Factor α, and Interleukin-6 in Activated Peripheral Blood Lymphocytes from Glioma Patients. Journal of Interferon and Cytokine Research, 1995, 15, 421-429.	0.5	18
57	THE SCID MOUSE REACTION TO HUMAN PERIPHERAL BLOOD MONONUCLEAR LEUKOCYTE ENGRAFTMENT. Transplantation, 1995, 60, 1306-1313.	0.5	18