
Dalila Azzout-Marniche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1627868/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of Protein Quality in Humans and Insights on Stable Isotope Approaches to Measure Digestibility – A Review. Advances in Nutrition, 2022, 13, 1131-1143.	2.9	16
2	Plasma FGF21 concentrations and spontaneous self-selection of protein suggest that 15% protein in the diet may not be enough for male adult rats. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E154-E164.	1.8	0
3	Moderate adiposity levels counteract protein metabolism modifications associated with aging in rats. European Journal of Nutrition, 2022, , 1.	1.8	2
4	Very low ileal nitrogen and amino acid digestibility of zein compared to whey protein isolate in healthy volunteers. American Journal of Clinical Nutrition, 2021, 113, 70-82.	2.2	24
5	Multi-criteria assessment of pea protein quality in rats: a comparison between casein, gluten and pea protein alone or supplemented with methionine. British Journal of Nutrition, 2021, 125, 389-397.	1.2	20
6	Protein metabolism and related body function: mechanistic approaches and health consequences. Proceedings of the Nutrition Society, 2021, 80, 243-251.	0.4	5
7	Urinary Medium-Chained Acyl-Carnitines Sign High Caloric Intake whereas Short-Chained Acyl-Carnitines Sign High -Protein Diet within a High-Fat, Hypercaloric Diet in a Randomized Crossover Design Dietary Trial. Nutrients, 2021, 13, 1191.	1.7	5
8	Rats Self-Select a Constant Protein-to-Carbohydrate Ratio Rather Than a Constant Protein-to-Energy Ratio and Have Low Plasma FGF21 Concentrations. Journal of Nutrition, 2021, 151, 1921-1936.	1.3	1
9	Plasma and Urinary Amino Acid-Derived Catabolites as Potential Biomarkers of Protein and Amino Acid Deficiency in Rats. Nutrients, 2021, 13, 1567.	1.7	2
10	Severe protein deficiency induces hepatic expression and systemic level of FGF21 but inhibits its hypothalamic expression in growing rats. Scientific Reports, 2021, 11, 12436.	1.6	11
11	Protein-carbohydrate interaction effects on energy balance, FGF21, IGF-1 and hypothalamic genes expression in rats. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E621-E635.	1.8	2
12	Protein Status Modulates an Appetite for Protein To Maintain a Balanced Nutritional State—A Perspective View. Journal of Agricultural and Food Chemistry, 2020, 68, 1830-1836.	2.4	9
13	Increased Susceptibility to Obesity and Glucose Intolerance in Adult Female Rats Programmed by High-Protein Diet during Gestation, But Not during Lactation. Nutrients, 2020, 12, 315.	1.7	2
14	Effect of different bariatric surgeries on dietary protein bioavailability in rats. American Journal of Physiology - Renal Physiology, 2019, 317, G592-G601.	1.6	14
15	Liver GCN2 controls hepatic FGF21 secretion and modulates whole body postprandial oxidation profile under a low-protein diet. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E1015-E1021.	1.8	10
16	Protein status modulates the rewarding value of foods and meals to maintain an adequate protein intake. Physiology and Behavior, 2019, 206, 7-12.	1.0	16
17	High Pancreatic Amylase Expression Promotes Adiposity in Obesity-Prone Carbohydrate-Sensitive Rats. Journal of Nutrition, 2019, 149, 270-279.	1.3	5
18	Low-protein and methionine, high-starch diets increase energy intake and expenditure, increase FGF21, decrease IGF-1, and have little effect on adiposity in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R486-R501.	0.9	35

Dalila Azzout-Marniche

#	Article	IF	CITATIONS
19	Low-protein diet-induced hyperphagia and adiposity are modulated through interactions involving thermoregulation, motor activity, and protein quality in mice. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E139-E151.	1.8	26
20	French Recommendations for Sugar Intake in Adults: A Novel Approach Chosen by ANSES. Nutrients, 2018, 10, 989.	1.7	18
21	A Systematic Review of the Effects of Plant Compared with Animal Protein Sources on Features of Metabolic Syndrome. Journal of Nutrition, 2017, 147, jn239574.	1.3	79
22	Metabolic effects of intermittent access to caloric or non-caloric sweetened solutions in mice fed a high-caloric diet. Physiology and Behavior, 2017, 175, 47-55.	1.0	9
23	Fructo-oligosaccharides reduce energy intake but do not affect adiposity in rats fed a low-fat diet but increase energy intake and reduce fat mass in rats fed a high-fat diet. Physiology and Behavior, 2017, 182, 114-120.	1.0	6
24	Modifying the Dietary Carbohydrate-to-Protein Ratio Alters the Postprandial Macronutrient Oxidation Pattern in Liver of AMPK-Deficient Mice. Journal of Nutrition, 2017, 147, 1669-1676.	1.3	27
25	Adaptation to a high-protein diet progressively increases the postprandial accumulation of carbon skeletons from dietary amino acids in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R771-R778.	0.9	5
26	Low-protein diet induces, whereas high-protein diet reduces hepatic FGF21 production in mice, but glucose and not amino acids up-regulate FGF21 in cultured hepatocytes. Journal of Nutritional Biochemistry, 2016, 36, 60-67.	1.9	31
27	Obesity-prone high-fat-fed rats reduce caloric intake and adiposity and gain more fat-free mass when allowed to self-select protein from carbohydrate:fat intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1169-R1176.	0.9	18
28	Urinary metabolic profile predicts high-fat diet sensitivity in the C57Bl6/J mouse. Journal of Nutritional Biochemistry, 2016, 31, 88-97.	1.9	4
29	High dietary protein decreases fat deposition induced by high-fat and high-sucrose diet in rats. British Journal of Nutrition, 2015, 114, 1132-1142.	1.2	40
30	Rats Prone to Obesity Under a High-Carbohydrate Diet have Increased Post-Meal CCK mRNA Expression and Characteristics of Rats Fed a High-Glycemic Index Diet. Frontiers in Nutrition, 2015, 2, 22.	1.6	17
31	Food intake and energy expenditure are increased in high-fat-sensitive but not in high-carbohydrate-sensitive obesity-prone rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R299-R309.	0.9	11
32	Dietary protein and blood glucose control. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17, 349-354.	1.3	26
33	Energy restriction only slightly influences protein metabolism in obese rats, whatever the level of protein and its source in the diet. International Journal of Obesity, 2013, 37, 263-271.	1.6	11
34	The Carbohydrate Sensitive Rat as a Model of Obesity. PLoS ONE, 2013, 8, e68436.	1.1	13
35	Dietary Proteins Contribute Little to Glucose Production, Even Under Optimal Gluconeogenic Conditions in Healthy Humans. Diabetes, 2013, 62, 1435-1442.	0.3	34
36	Identification of behavioral and metabolic factors predicting adiposity sensitivity to both high fat and high carbohydrate diets in rats. Frontiers in Physiology, 2011, 2, 96.	1.3	14

#	Article	IF	CITATIONS
37	Effects of monosodium glutamate supplementation on glutamine metabolism in adult rats. Frontiers in Bioscience - Elite, 2011, E3, 279-290.	0.9	17
38	The postprandial use of dietary amino acids as an energy substrate is delayed after the deamination process in rats adapted for 2Âweeks to a high protein diet. Amino Acids, 2011, 40, 1461-1472.	1.2	25
39	Down-regulation of the ubiquitin–proteasome proteolysis system by amino acids and insulin involves the adenosine monophosphate-activated protein kinase and mammalian target of rapamycin pathways in rat hepatocytes. Amino Acids, 2011, 41, 457-468.	1.2	21
40	Increasing Protein at the Expense of Carbohydrate in the Diet Down-Regulates Glucose Utilization as Glucose Sparing Effect in Rats. PLoS ONE, 2011, 6, e14664.	1.1	43
41	Leucine and Branchedâ€Chain Amino Acids Modulate Translation in Rat Primary Hepatocytes. FASEB Journal, 2011, 25, 983.15.	0.2	0
42	Dietary protein regulates hepatic constitutive protein anabolism in rats in a dose-dependent manner and independently of energy nutrient composition. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R1720-R1730.	0.9	8
43	Postprandial Nutrient Partitioning but Not Energy Expenditure Is Modified in Growing Rats during Adaptation to a High-Protein Diet. Journal of Nutrition, 2010, 140, 939-945.	1.3	14
44	The down regulation of ubiquitinâ€proteasome proteolysis system in response to amino acids and insulin involves AMPK and mTOR pathways in rat liver hepatocytes. FASEB Journal, 2010, 24, 97.3.	0.2	0
45	mTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E1313-E1323.	1.8	87
46	[13C] GC–C-IRMS analysis of methylboronic acid derivatives of glucose from liver glycogen after the ingestion of [13C] labeled tracers in rats. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 3638-3644.	1.2	6
47	Whole body amino acids are candidate precursors of postprandial hepatic neoglycogenogenesis in high protein fed rats. FASEB Journal, 2009, 23, 738.9.	0.2	0
48	Dramatic modification of liver carbohydrate metabolic pathways and lipogenesis during adaptation to a high protein diet in rat. FASEB Journal, 2009, 23, 724.14.	0.2	0
49	Influence of monosodium glutamate supplementation on plasma glutamine and on enzymes related to glutamine metabolism in rats. FASEB Journal, 2009, 23, 738.8.	0.2	Ο
50	mTOR, AMPK and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to amino acids and insulin FASEB Journal, 2009, 23, 228.2.	0.2	0
51	Evidence for a long time course adaptation of glucose metabolism to high protein feeding in rats without changes in resting energy expenditure. FASEB Journal, 2008, 22, 441.7.	0.2	0
52	Dietary protein intake is an independent and doseâ€dependent regulator of hepatic anabolism in rats fed high protein diets. FASEB Journal, 2008, 22, 312.1.	0.2	0
53	Liver glyconeogenesis: a pathway to cope with postprandial amino acid excess in high-protein fed rats?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1400-R1407.	0.9	65
54	Dietary cysteine alleviates sucrose-induced oxidative stress and insulin resistance. Free Radical Biology and Medicine, 2007, 42, 1089-1097.	1.3	89

#	Article	IF	CITATIONS
55	The Reduced Energy Intake of Rats Fed a High-Protein Low-Carbohydrate Diet Explains the Lower Fat Deposition, but Macronutrient Substitution Accounts for the Improved Glycemic Control. Journal of Nutrition, 2006, 136, 1849-1854.	1.3	76
56	AMP-activated protein kinase and hepatic genes involved in glucose metabolism. Biochemical Society Transactions, 2003, 31, 220-223.	1.6	43
57	Sterol-regulatory-element-binding protein I c mediates insulin action on hepatic gene expression. Biochemical Society Transactions, 2001, 29, 547-552.	1.6	27
58	Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes. Biochemical Journal, 2000, 350, 389.	1.7	67
59	Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes. Biochemical Journal, 2000, 350, 389-393.	1.7	236
60	Characterization of the Role of AMP-Activated Protein Kinase in the Regulation of Glucose-Activated Gene Expression Using Constitutively Active and Dominant Negative Forms of the Kinase. Molecular and Cellular Biology, 2000, 20, 6704-6711.	1.1	376
61	The inhibitory effect of glucose on phosphoenolpyruvate carboxykinase gene expression in cultured hepatocytes is transcriptional and requires glucose metabolism. FEBS Letters, 1999, 460, 527-532.	1.3	31