
Daniel D Melnick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1627784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How Good is a Paleoseismic Record of Megathrust Earthquakes for Probabilistic Forecasting?. Seismological Research Letters, 2022, 93, 739-748.	1.9	0
2	The occurrence and hazards of great subduction zone earthquakes. Nature Reviews Earth & Environment, 2022, 3, 125-140.	29.7	17
3	Midâ€Pleistocene to Recent Crustal Extension in the Inner Graben of the Northern Kenya Rift. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	3
4	Geomorphic expression of a tectonically active rift-transfer zone in southern Ethiopia. Geomorphology, 2022, 403, 108162.	2.6	3
5	The giant 1960 tsunami in the context of a 6000â€year record of paleotsunamis and coastal evolution in southâ€central Chile. Earth Surface Processes and Landforms, 2022, 47, 2062-2078.	2.5	1
6	The cryptic seismic potential of the Pichilemu blind fault in Chile revealed by off-fault geomorphology. Nature Communications, 2022, 13, .	12.8	4
7	Origen y distribución de depósitos de tsunami en la marisma de ChaihuÃn (40° S/73,5° O), Chile. Andean Geology, 2021, 48, 125.	0.5	3
8	A comprehensive database of active and potentially-active continental faults in Chile at 1:25,000 scale. Scientific Data, 2021, 8, 20.	5.3	28
9	Transient Deformation and Stress Patterns Induced by the 2010 Maule Earthquake in the Illapel Segment. Frontiers in Earth Science, 2021, 9, .	1.8	4
10	Fast Holocene slip and localized strain along the Liquiñe-Ofqui strike-slip fault system, Chile. Scientific Reports, 2021, 11, 5970.	3.3	18
11	Sensitivity of tidal marshes as recorders of major megathrust earthquakes: constraints from the 25 December 2016 M w 7.6 Chiloé earthquake, Chile. Journal of Quaternary Science, 2021, 36, 991-1002.	2.1	3
12	Unrushed megathrusts. Nature Geoscience, 2021, 14, 260-261.	12.9	0
13	Frictional Segmentation of the Chilean Megathrust From a Multivariate Analysis of Geophysical, Geological, and Geodetic Data. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020647.	3.4	9
14	Marine terraces of the last interglacial period along the Pacific coast of South America (1° N–40° S) Earth System Science Data, 2021, 13, 2487-2513.	[•] 9.9	10
15	Geological evidence of an unreported historical Chilean tsunami reveals more frequent inundation. Communications Earth & Environment, 2021, 2, .	6.8	7
16	Continental rifting at magmatic centres: structural implications from the Late Quaternary Menengai Caldera, central Kenya Rift. Journal of the Geological Society, 2020, 177, 153-169.	2.1	14
17	How do sea-level curves influence modeled marine terrace sequences?. Quaternary Science Reviews, 2020, 229, 106132.	3.0	22
18	Variable Quaternary Uplift Along the Southern Margin of the Central Anatolian Plateau Inferred From Modeling Marine Terrace Sequences. Tectonics, 2020, 39, e2019TC005921.	2.8	15

#	Article	IF	CITATIONS
19	Holocene relative sea-level change along the tectonically active Chilean coast. Quaternary Science Reviews, 2020, 236, 106281.	3.0	19
20	Resilience of an aquatic macrophyte to an anthropogenically induced environmental stressor in a Ramsar wetland of southern Chile. Ambio, 2019, 48, 304-312.	5.5	7
21	Hidden Holocene Slip Along the Coastal El Yolki Fault in Central Chile and Its Possible Link With Megathrust Earthquakes. Journal of Geophysical Research: Solid Earth, 2019, 124, 7280-7302.	3.4	10
22	First Field Evidence of Coseismic Land‣evel Change Associated with the 25 December 2016 MwÂ7.6 Chiloé, Chile, Earthquake. Bulletin of the Seismological Society of America, 2019, 109, 87-98.	2.3	8
23	Nearly Instantaneous Tsunamis Following the <i>Mw</i> 7.5 2018 Palu Earthquake. Geophysical Research Letters, 2019, 46, 5117-5126.	4.0	93
24	Lithospheric flexure and rheology determined by climate cycle markers in the Corinth Rift. Scientific Reports, 2019, 9, 4260.	3.3	24
25	TerraceM-2: A Matlab® Interface for Mapping and Modeling Marine and Lacustrine Terraces. Frontiers in Earth Science, 2019, 7, .	1.8	22
26	Cascading processes in a changing environment: Disturbances on fluvial ecosystems in Chile and implications for hazard and risk management. Science of the Total Environment, 2019, 655, 1089-1103.	8.0	34
27	The subaqueous landslide cycle in south-central Chilean lakes: The role of tephra, slope gradient and repeated seismic shaking. Sedimentary Geology, 2019, 381, 84-105.	2.1	17
28	Recovery of black-necked swans, macrophytes and water quality in a Ramsar wetland of southern Chile: Assessing resilience following sudden anthropogenic disturbances. Science of the Total Environment, 2018, 628-629, 291-301.	8.0	12
29	Chilean megathrust earthquake recurrence linked to frictional contrast at depth. Nature Geoscience, 2018, 11, 285-290.	12.9	61
30	Back to full interseismic plate locking decades after the giant 1960 Chile earthquake. Nature Communications, 2018, 9, 3527.	12.8	13
31	The superâ€interseismic phase of the megathrust earthquake cycle in Chile. Geophysical Research Letters, 2017, 44, 784-791.	4.0	59
32	Postseismic uplift of the Andes following the 2010 Maule earthquake: Implications for mantle rheology. Geophysical Research Letters, 2017, 44, 1768-1776.	4.0	25
33	Short-lived increase in erosion during the African Humid Period: Evidence from the northern Kenya Rift. Earth and Planetary Science Letters, 2017, 459, 58-69.	4.4	27
34	Quantifying offshore foreâ€arc deformation and splayâ€fault slip using drowned Pleistocene shorelines, Arauco Bay, Chile. Journal of Geophysical Research: Solid Earth, 2017, 122, 4529-4558.	3.4	29
35	Reawakening of large earthquakes in south central Chile: The 2016 <i>M</i> _{<i>w</i>} 7.6 Chiloé event. Geophysical Research Letters, 2017, 44, 6633-6640.	4.0	30
36	Slip along the Sultanhanı Fault in Central Anatolia from deformed Pleistocene shorelines of palaeo-lake Konya and implications for seismic hazards in low-strain regions. Geophysical Journal International, 2017, 209, 1431-1454.	2.4	17

#	Article	IF	CITATIONS
37	Corrigendum to "Short-lived increase in erosion during the African Humid Period: Evidence from the northern Kenya Rift―[Earth Planet. Sci. Lett. 459 (2017) 58–69]. Earth and Planetary Science Letters, 2017, 474, 528.	4.4	0
38	Calibrating coseismic coastal land-level changes during the 2014 Iquique (Mw=8.2) earthquake (northern Chile) with leveling, GPS and intertidal biota. PLoS ONE, 2017, 12, e0174348.	2.5	15
39	Tectonic control on rock uplift, exhumation, and topography above an oceanic ridge collision: Southern Patagonian Andes (47°S), Chile. Tectonics, 2016, 35, 1317-1341.	2.8	43
40	Rise of the central Andean coast by earthquakes straddling the Moho. Nature Geoscience, 2016, 9, 401-407.	12.9	94
41	TerraceM: A MATLAB® tool to analyze marine and lacustrine terraces using high-resolution topography. , 2016, 12, 176-195.		31
42	Corinth terraces re-visited: Improved paleoshoreline determination using Pleiades-DEMs. Geotectonic Research, 2015, 97, 12-14.	0.1	6
43	Responses of Dune Plant Communities to Continental Uplift from a Major Earthquake: Sudden Releases from Coastal Squeeze. PLoS ONE, 2015, 10, e0124334.	2.5	16
44	Turbidite paleoseismology along the active continental margin of Chile – Feasible or not?. Quaternary Science Reviews, 2015, 120, 71-92.	3.0	26
45	Segmentation of the 2010 Maule Chile earthquake rupture from a joint analysis of uplifted marine terraces and seismic-cycle deformation patterns. Quaternary Science Reviews, 2015, 113, 171-192.	3.0	50
46	Controls on submarine canyon activity during sea-level highstands: The BiobÃo canyon system offshore Chile. , 2015, 11, 1226-1255.		40
47	Vertical deformation through a complete seismic cycle at Isla Santa MarÃa, Chile. Nature Geoscience, 2015, 8, 547-551.	12.9	44
48	Unraveling Sea-Level Variations and Tectonic Uplift in Wave-Built Marine Terraces, Santa MarÃa Island, Chile. Quaternary Research, 2015, 83, 216-228.	1.7	33
49	Chapter 10 The rock coast of South and Central America. Geological Society Memoir, 2014, 40, 155-191.	1.7	10
50	Coastal staircase sequences reflecting sea-level oscillations and tectonic uplift during the Quaternary and Neogene. Earth-Science Reviews, 2014, 132, 13-38.	9.1	151
51	Splay fault triggering by great subduction earthquakes inferred from finite element models. Geophysical Research Letters, 2014, 41, 385-391.	4.0	28
52	Tectonic implications of fluvial incision and pediment deformation at the northern margin of the Central Anatolian Plateau based on multiple cosmogenic nuclides. Tectonics, 2013, 32, 1107-1120.	2.8	30
53	Splay fault slip during the Mw 8.8 2010 Maule Chile earthquake: REPLY. Geology, 2013, 41, e310-e310.	4.4	4
54	Differential uplift along the northern margin of the Central Anatolian Plateau: inferences from marine terraces. Quaternary Science Reviews, 2013, 81, 12-28.	3.0	46

#	Article	IF	CITATIONS
55	Ecological Implications of Extreme Events: Footprints of the 2010 Earthquake along the Chilean Coast. PLoS ONE, 2012, 7, e35348.	2.5	112
56	Estimating coseismic coastal uplift with an intertidal mussel: calibration for the 2010 Maule Chile earthquake (MwÂ=Â8.8). Quaternary Science Reviews, 2012, 42, 29-42.	3.0	49
57	Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. Earth and Planetary Science Letters, 2012, 321-322, 152-165.	4.4	198
58	Steady rifting in northern Kenya inferred from deformed Holocene lake shorelines of the Suguta and Turkana basins. Earth and Planetary Science Letters, 2012, 331-332, 335-346.	4.4	37
59	East African mid-Holocene wet–dry transition recorded in palaeo-shorelines of Lake Turkana, northern Kenya Rift. Earth and Planetary Science Letters, 2012, 331-332, 322-334.	4.4	135
60	Splay fault slip during the Mw 8.8 2010 Maule Chile earthquake. Geology, 2012, 40, 251-254.	4.4	81
61	Darwin' seismic gap closed by the 2010 Maule earthquake. Andean Geology, 2012, 39, .	0.5	5
62	Late Neogene and active orogenic uplift in the Central Pontides associated with the North Anatolian Fault: Implications for the northern margin of the Central Anatolian Plateau, Turkey. Tectonics, 2011, 30, .	2.8	66
63	Heterogeneous plate locking in the South–Central Chile subduction zone: Building up the next great earthquake. Earth and Planetary Science Letters, 2011, 305, 413-424.	4.4	129
64	Levantamiento cosismico e impacto del tsunami a lo largo de la costa de Chile central asociado al terremoto del Maule Mw8,8 de 2010 Andean Geology, 2011, 38, .	0.5	22
65	Forearc uplift rates deduced from sediment cores of two coastal lakes in south-central Chile. Tectonophysics, 2010, 495, 129-143.	2.2	18
66	A morphotectonic analysis of central Patagonian Cordillera: Negative inversion of the Andean belt over a buried spreading center?. Tectonics, 2010, 29, n/a-n/a.	2.8	29
67	Land-Level Changes Produced by the <i>M</i> _w 8.8 2010 Chilean Earthquake. Science, 2010, 329, 916-916.	12.6	126
68	Late Pleistocene–Holocene rise and collapse of Lake Suguta, northern Kenya Rift. Quaternary Science Reviews, 2009, 28, 911-925.	3.0	81
69	Impact of megathrust geometry on inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake. Geophysical Research Letters, 2009, 36, .	4.0	172
70	Segmentation of megathrust rupture zones from foreâ€arc deformation patterns over hundreds to millions of years, Arauco peninsula, Chile. Journal of Geophysical Research, 2009, 114, .	3.3	167
71	Active faulting and heterogeneous deformation across a megathrust segment boundary from GPS data, south central Chile (36–39°S). Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	43
72	Coastal deformation and great subduction earthquakes, Isla Santa Maria, Chile (37ÂS). Bulletin of the Geological Society of America, 2006, 118, 1463-1480.	3.3	109

#	Article	IF	CITATIONS
73	Morphotectonic and Geologic Digital Map Compilations of the South-Central Andes (36°–42°S). , 2006, , 565-568.		41
74	Long-Term Geological Evolution and Mass-Flow Balance of the South-Central Andes. , 2006, , 401-428.		34
75	Neogene tectonic evolution of the Neuqueln Andes western flank (37–39°S). , 2006, , .		19
76	Incipient axial collapse of the Main Cordillera and strain partitioning gradient between the central and Patagonian Andes, Lago Laja, Chile. Tectonics, 2006, 25, n/a-n/a.	2.8	29
77	Kinematic constraints on intra-arc shear and strain partitioning in the southern Andes between 38°S and 42°S latitude. Tectonics, 2006, 25, n/a-n/a.	2.8	149
78	Using uplifted Holocene beach berms for paleoseismic analysis on the Santa MarÃa Island, south-central Chile. Geophysical Research Letters, 2006, 33, .	4.0	63
79	Central and Southern Andean Tectonic Evolution Inferred from Arc Magmatism. , 2006, , 337-353.		50
80	The Segmented Overriding Plate and Coupling at the South-Central Chilean Margin (36–42°S). , 2006, , 355-374.		27
81	Inversion of forearc basins in south-central Chile caused by rapid glacial age trench fill. Geology, 2006, 34, 709.	4.4	113
82	Structural control on arc volcanism: The Caviahue–Copahue complex, Central to Patagonian Andes transition (38°S). Journal of South American Earth Sciences, 2006, 22, 66-88.	1.4	82
83	Data Management of the SFB 267 for the Andes — from Ink and Paper to Digital Databases. , 2006, , 539-556.		8
84	Plio-Quaternary extensional tectonics of the Central Anatolian Plateau: a case study from the Tuz Gölż Basin, Turkey. Turkish Journal of Earth Sciences, 0, , .	1.0	10