Bruno Chausse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1627759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Priming of microglia by type II interferon is lasting and resistant to modulation by interleukin-10 in situ. Journal of Neuroimmunology, 2022, 368, 577881.	2.3	3
2	Microglia and lipids: how metabolism controls brain innate immunity. Seminars in Cell and Developmental Biology, 2021, 112, 137-144.	5.0	75
3	Novel role of cholesteryl ester transfer protein (CETP): attenuation of adiposity by enhancing lipolysis and brown adipose tissue activity. Metabolism: Clinical and Experimental, 2021, 114, 154429.	3.4	8
4	TLR2- and TLR3-activated microglia induce different levels of neuronal network dysfunction in a context-dependent manner. Brain, Behavior, and Immunity, 2021, 96, 80-91.	4.1	32
5	GM-CSF induces noninflammatory proliferation of microglia and disturbs electrical neuronal network rhythms in situ. Journal of Neuroinflammation, 2020, 17, 235.	7.2	34
6	Neuronal gamma oscillations and activityâ€dependent potassium transients remain regular after depletion of microglia in postnatal cortex tissue. Journal of Neuroscience Research, 2020, 98, 1953-1967.	2.9	8
7	Selective inhibition of mitochondrial respiratory complexes controls the transition of microglia into a neurotoxic phenotype in situ. Brain, Behavior, and Immunity, 2020, 88, 802-814.	4.1	36
8	Distinct metabolic patterns during microglial remodeling by oleate and palmitate. Bioscience Reports, 2019, 39, .	2.4	30
9	Resilient hepatic mitochondrial function and lack of iNOS dependence in diet-induced insulin resistance. PLoS ONE, 2019, 14, e0211733.	2.5	9
10	Priming of microglia with IFN-Î ³ slows neuronal gamma oscillations in situ. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4637-4642.	7.1	87
11	Cell culture models of fatty acid overload: Problems and solutions. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 143-151.	2.4	87
12	Hypothalamic mitochondrial abnormalities occur downstream of inflammation in diet-induced obesity. Molecular and Cellular Endocrinology, 2018, 460, 238-245.	3.2	38
13	Caloric restriction increases brain mitochondrial calcium retention capacity and protects against excitotoxicity. Aging Cell, 2017, 16, 73-81.	6.7	75
14	Diluted serum from calorieâ€restricted animals promotes mitochondrial βâ€cell adaptations and protect against glucolipotoxicity. FEBS Journal, 2016, 283, 822-833.	4.7	25
15	Bioenergetic profiling in the skin. Experimental Dermatology, 2016, 25, 147-148.	2.9	7
16	Intermittent Fasting Results in Tissue-Specific Changes in Bioenergetics and Redox State. PLoS ONE, 2015, 10, e0120413.	2.5	57
17	Mitochondrial compartmentalization of redox processes. Free Radical Biology and Medicine, 2012, 52, 2201-2208.	2.9	69
18	Long-term intermittent feeding, but not caloric restriction, leads to redox imbalance, insulin receptor nitration, and glucose intolerance. Free Radical Biology and Medicine, 2011, 51, 1454-1460.	2.9	57