Charli Sargent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/162771/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sleep Quality in Elite Athletes: Normative Values, Reliability and Understanding Contributors to Poor Sleep. Sports Medicine, 2022, 52, 417-426.	3.1	12
2	The Sleep Behaviors of Elite Australian Rules Footballers Before and After Games During an Entire Season. International Journal of Sports Physiology and Performance, 2022, 17, 932-942.	1.1	4
3	Timing of Sleep in the Break Between Two Consecutive Night-Shifts: The Effect of Different Strategies on Daytime Sleep and Night-Time Neurobehavioural Function. Nature and Science of Sleep, 2022, Volume 14, 231-242.	1.4	3
4	No Effect of Chronotype on Hunger or Snack Consumption during a Night Shift with Acute Sleep Deprivation. Nutrients, 2022, 14, 1324.	1.7	0
5	The Impact of Sleep Inertia on Physical, Cognitive, and Subjective Performance Following a 1- or 2-Hour Afternoon Nap in Semiprofessional Athletes. International Journal of Sports Physiology and Performance, 2022, 17, 1140-1150.	1.1	4
6	Sleep Regularity and Predictors of Sleep Efficiency and Sleep Duration in Elite Team Sport Athletes. Sports Medicine - Open, 2022, 8, .	1.3	8
7	How Much Sleep Does an Elite Athlete Need?. International Journal of Sports Physiology and Performance, 2021, 16, 1746-1757.	1.1	44
8	The Association Between Sleep and In-Game Performance in Basketball Players. International Journal of Sports Physiology and Performance, 2021, 16, 333-341.	1.1	10
9	Wrist-Based Photoplethysmography Assessment of Heart Rate and Heart Rate Variability: Validation of WHOOP. Sensors, 2021, 21, 3571.	2.1	31
10	A Validation Study of a Commercial Wearable Device to Automatically Detect and Estimate Sleep. Biosensors, 2021, 11, 185.	2.3	36
11	No Effect of Chronotype on Sleepiness, Alertness, and Sustained Attention during a Single Night Shift. Clocks & Sleep, 2021, 3, 377-386.	0.9	2
12	Managing Travel Fatigue and Jet Lag in Athletes: A Review and Consensus Statement. Sports Medicine, 2021, 51, 2029-2050.	3.1	40
13	An evaluation and comparison of commercial driver sleepiness detection technology: a rapid review. Physiological Measurement, 2021, 42, 074007.	1.2	7
14	Consecutive Nights of Moderate Sleep Loss Does Not Affect Mood in Healthy Young Males. Clocks & Sleep, 2021, 3, 442-448.	0.9	2
15	An Individualized Intervention Increases Sleep Duration in Professional Athletes. Journal of Strength and Conditioning Research, 2021, 35, 3407-3413.	1.0	2
16	Sleep and the athlete: narrative review and 2021 expert consensus recommendations. British Journal of Sports Medicine, 2021, 55, 356-368.	3.1	208
17	Implementing a Circadian Adaptation Schedule after Eastward Flight in Young Male Athletes. Applied Sciences (Switzerland), 2021, 11, 9962.	1.3	1
18	Glucose Concentrations from Continuous Glucose Monitoring Devices Compared to Those from Blood Plasma during an Oral Glucose Tolerance Test in Healthy Young Adults. International Journal of Environmental Research and Public Health, 2021, 18, 12994.	1.2	4

#	Article	IF	CITATIONS
19	Moderateâ€intensity exercise performed in the evening does not impair sleep in healthy males. European Journal of Sport Science, 2020, 20, 80-89.	1.4	25
20	Exercise before bed does not impact sleep inertia in young healthy males. Journal of Sleep Research, 2020, 29, e12903.	1.7	4
21	Insufficient Sleep in Young Athletes? Causes, Consequences, and Potential Treatments. Sports Medicine, 2020, 50, 461-470.	3.1	44
22	A validation study of the WHOOP strap against polysomnography to assess sleep. Journal of Sports Sciences, 2020, 38, 2631-2636.	1.0	52
23	Finding DLMO: estimating dim light melatonin onset from sleep markers derived from questionnaires, diaries and actigraphy. Chronobiology International, 2020, 37, 1412-1424.	0.9	22
24	The likelihood of crashing during a simulated post-work commute decreases across a week of consecutive night shifts. Chronobiology International, 2020, 37, 1425-1429.	0.9	3
25	<p>Finger Twitches are More Frequent in REM Sleep Than in Non-REM Sleep</p> . Nature and Science of Sleep, 2020, Volume 12, 49-56.	1.4	6
26	How to manage travel fatigue and jet lag in athletes? A systematic review of interventions. British Journal of Sports Medicine, 2020, 54, 960-968.	3.1	36
27	Interventions to Minimize Jet Lag After Westward and Eastward Flight. Frontiers in Physiology, 2019, 10, 927.	1.3	35
28	External Activity Demands Differ Between Referees and Players During a Sub-Elite, Men's Basketball Match. Research Quarterly for Exercise and Sport, 2019, 90, 720-725.	0.8	13
29	Working Time Society consensus statements: Evidence-based effects of shift work on physical and mental health. Industrial Health, 2019, 57, 139-157.	0.4	125
30	Travel fatigue and sleep/wake behaviors of professional soccer players during international competition. Sleep Health, 2019, 5, 141-147.	1.3	43
31	The effects of cold water immersion on the amount and quality of sleep obtained by elite cyclists during a simulated hill climbing tour. Sport Sciences for Health, 2019, 15, 223-228.	0.4	4
32	Unique associations of the Job Demand-Control-Support model subscales with leisure-time physical activity and dietary energy intake. Industrial Health, 2019, 57, 99-117.	0.4	1
33	The impact of breaking up prolonged sitting on glucose metabolism and cognitive function when sleep is restricted. Neurobiology of Sleep and Circadian Rhythms, 2018, 4, 17-23.	1.4	32
34	Impact of short- compared to long-haul international travel on the sleep and wellbeing of national wheelchair basketball athletes. Journal of Sports Sciences, 2018, 36, 1476-1484.	1.0	21
35	Athletes underestimate sleep quantity during daytime nap opportunities. Chronobiology International, 2018, 35, 869-871.	0.9	10
36	Does breaking up prolonged sitting when sleep restricted affect postprandial glucose responses and subsequent sleep architecture? – a pilot study. Chronobiology International, 2018, 35, 821-826.	0.9	7

#	Article	IF	CITATIONS
37	Can Sleep Be Used as an Indicator of Overreaching and Overtraining in Athletes?. Frontiers in Physiology, 2018, 9, 436.	1.3	41
38	Daytime naps can be used to supplement night-time sleep in athletes. Chronobiology International, 2018, 35, 865-868.	0.9	30
39	How well does a commercially available wearable device measure sleep in young athletes?. Chronobiology International, 2018, 35, 754-758.	0.9	36
40	Driving when distracted and sleepy: The effect of phone and passenger conversations on driving performance. Chronobiology International, 2018, 35, 750-753.	0.9	2
41	Flat-out napping: The quantity and quality of sleep obtained in a seat during the daytime increase as the angle of recline of the seat increases. Chronobiology International, 2018, 35, 872-883.	0.9	30
42	The efficacy of objective and subjective predictors of driving performance during sleep restriction and circadian misalignment. Accident Analysis and Prevention, 2017, 99, 445-451.	3.0	38
43	Are two halves better than one whole? A comparison of the amount and quality of sleep obtained by healthy adult males living on split and consolidated sleep–wake schedules. Accident Analysis and Prevention, 2017, 99, 428-433.	3.0	12
44	Alcohol use in shiftworkers. Accident Analysis and Prevention, 2017, 99, 395-400.	3.0	34
45	Using interstimulus interval to maximise sensitivity of the Psychomotor Vigilance Test to fatigue. Accident Analysis and Prevention, 2017, 99, 406-410.	3.0	20
46	Do split sleep/wake schedules reduce or increase sleepiness for continuous operations?. Accident Analysis and Prevention, 2017, 99, 434-439.	3.0	9
47	Greater Effect of East versus West Travel on Jet Lag, Sleep, and Team Sport Performance. Medicine and Science in Sports and Exercise, 2017, 49, 2548-2561.	0.2	63
48	Sleep at the helm: A case study of how a head coach sleeps compared to his team. International Journal of Sports Science and Coaching, 2017, 12, 782-789.	0.7	6
49	Controlling fatigue risk in safety-critical workplaces: A summary of selected papers from the 9th International Conference on Managing Fatigue in Transportation, Resources and Health. Accident Analysis and Prevention, 2017, 99, 379-382.	3.0	Ο
50	Sleep Quality but Not Quantity Altered With a Change in Training Environment in Elite Australian Rules Football Players. International Journal of Sports Physiology and Performance, 2017, 12, 75-80.	1.1	43
51	Improving Cardiometabolic Health with Diet, Physical Activity, and Breaking Up Sitting: What about Sleep?. Frontiers in Physiology, 2017, 8, 865.	1.3	37
52	Sleep/Wake Behaviours in Elite Athletes from Three Different Football Codes. Journal of Sports Science and Medicine, 2017, 16, 604-605.	0.7	12
53	The Relationships between Human Fatigue and Public Health: A Brief Commentary on Selected Papers from the 9th International Conference on Managing Fatigue in Transportation, Resources and Health. International Journal of Environmental Research and Public Health, 2016, 13, 842.	1.2	3
54	Daily Rhythms of Hunger and Satiety in Healthy Men during One Week of Sleep Restriction and Circadian Misalignment. International Journal of Environmental Research and Public Health, 2016, 13, 170.	1.2	47

#	Article	IF	CITATIONS
55	Sleep Duration and Chronic Fatigue Are Differently Associated with the Dietary Profile of Shift Workers. Nutrients, 2016, 8, 771.	1.7	35
56	The Chronotype of Elite Athletes. Journal of Human Kinetics, 2016, 54, 219-225.	0.7	75
57	The time-of-day that breaks occur between consecutive duty periods affects the sleep strategies used by shiftworkers. Chronobiology International, 2016, 33, 653-656.	0.9	9
58	Sleep duration is reduced in elite athletes following night-time competition. Chronobiology International, 2016, 33, 667-670.	0.9	75
59	Waking up in the zone with Sleep Cycle. British Journal of Sports Medicine, 2016, 50, 1419-1420.	3.1	1
60	No first night shift effect observed following a nocturnal main sleep and a prophylactic 1-h afternoon nap. Chronobiology International, 2016, 33, 716-720.	0.9	6
61	The validity of activity monitors for measuring sleep in elite athletes. Journal of Science and Medicine in Sport, 2016, 19, 848-853.	0.6	124
62	Differential associations of job control components with both waist circumference and body mass index. Social Science and Medicine, 2015, 143, 1-8.	1.8	5
63	Sleep/wake behaviour of endurance cyclists before and during competition. Journal of Sports Sciences, 2015, 33, 293-299.	1.0	74
64	Sleep/wake behaviours of elite athletes from individual and team sports. European Journal of Sport Science, 2015, 15, 94-100.	1.4	203
65	Cross-Sectional Associations between Multiple Lifestyle Behaviors and Health-Related Quality of Life in the 10,000 Steps Cohort. PLoS ONE, 2014, 9, e94184.	1.1	57
66	The effects of a split sleep–wake schedule on neurobehavioural performance and predictions of performance under conditions of forced desynchrony. Chronobiology International, 2014, 31, 1209-1217.	0.9	29
67	The impact of training schedules on the sleep and fatigue of elite athletes. Chronobiology International, 2014, 31, 1160-1168.	0.9	211
68	Does Hydrotherapy Help or Hinder Adaptation to Training in Competitive Cyclists?. Medicine and Science in Sports and Exercise, 2014, 46, 1631-1639.	0.2	43
69	Alternatives to polysomnography (PSG): A validation of wrist actigraphy and a partial-PSG system. Behavior Research Methods, 2014, 46, 1032-1041.	2.3	108
70	Sleep or swim? Earlyâ€morning training severely restricts the amount of sleep obtained by elite swimmers. European Journal of Sport Science, 2014, 14, S310-5.	1.4	191
71	Athletes' precompetitive sleep behaviour and its relationship with subsequent precompetitive mood and performance. European Journal of Sport Science, 2014, 14, S123-30.	1.4	109
72	The effects of transmeridian travel and altitude on sleep: preparation for football competition. Journal of Sports Science and Medicine, 2014, 13, 718-20.	0.7	14

#	Article	IF	CITATIONS
73	Methods of the international study on soccer at altitude 3600â€m (ISA3600). British Journal of Sports Medicine, 2013, 47, i80-i85.	3.1	15
74	Position statement—altitude training for improving team-sport players' performance: current knowledge and unresolved issues. British Journal of Sports Medicine, 2013, 47, i8-i16.	3.1	54
75	Soccer activity profile of altitude versus sea-level natives during acclimatisation to 3600â€m (ISA3600). British Journal of Sports Medicine, 2013, 47, i107-i113.	3.1	27
76	The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600). British Journal of Sports Medicine, 2013, 47, i114-i120.	3.1	58
77	Changes in blood gas transport of altitude native soccer players near sea-level and sea-level native soccer players at altitude (ISA3600). British Journal of Sports Medicine, 2013, 47, i93-i99.	3.1	32
78	The impact of altitude on the sleep of young elite soccer players (ISA3600). British Journal of Sports Medicine, 2013, 47, i86-i92.	3.1	46
79	Yin and yang, or peas in a pod? Individual-sport versus team-sport athletes and altitude training. British Journal of Sports Medicine, 2013, 47, 1150-1154.	3.1	14
80	Wellness, fatigue and physical performance acclimatisation to a 2-week soccer camp at 3600â€m (ISA3600). British Journal of Sports Medicine, 2013, 47, i100-i106.	3.1	47
81	Time-of-Day Mediates the Influences of Extended Wake and Sleep Restriction on Simulated Driving. Chronobiology International, 2012, 29, 572-579.	0.9	28
82	The Relative Contributions of the Homeostatic and Circadian Processes to Sleep Regulation under Conditions of Severe Sleep Restriction. Sleep, 2012, 35, 941-948.	0.6	16
83	Sleep Restriction Masks the Influence of the Circadian Process on Sleep Propensity. Chronobiology International, 2012, 29, 565-571.	0.9	33
84	Duty periods with early start times restrict the amount of sleep obtained by short-haul airline pilots. Accident Analysis and Prevention, 2012, 45, 22-26.	3.0	47
85	The influence of circadian time and sleep dose on subjective fatigue ratings. Accident Analysis and Prevention, 2012, 45, 50-54.	3.0	28
86	The effect of sleep restriction on snacking behaviour during a week of simulated shiftwork. Accident Analysis and Prevention, 2012, 45, 62-67.	3.0	73
87	Can a simple balance task be used to assess fitness for duty?. Accident Analysis and Prevention, 2012, 45, 74-79.	3.0	19
88	Mismatch between subjective alertness and objective performance under sleep restriction is greatest during the biological night. Journal of Sleep Research, 2012, 21, 40-49.	1.7	81
89	The Validity of Temperature-Sensitive Ingestible Capsules for Measuring Core Body Temperature in Laboratory Protocols. Chronobiology International, 2011, 28, 719-726.	0.9	23
90	Dynamics of Neurobehavioral Performance Variability Under Forced Desynchrony: Evidence of State Instability. Sleep, 2011, 34, 57-63.	0.6	32

#	Article	IF	CITATIONS
91	Sleep, Wake and Phase Dependent Changes in Neurobehavioral Function under Forced Desynchrony. Sleep, 2011, 34, 931-41.	0.6	70
92	THE INFLUENCE OF CIRCADIAN PHASE AND PRIOR WAKE ON NEUROMUSCULAR FUNCTION. Chronobiology International, 2010, 27, 911-921.	0.9	38
93	CONTRIBUTION OF CORE BODY TEMPERATURE, PRIOR WAKE TIME, AND SLEEP STAGES TO COGNITIVE THROUGHPUT PERFORMANCE DURING FORCED DESYNCHRONY. Chronobiology International, 2010, 27, 898-910.	0.9	41
94	INTERINDIVIDUAL DIFFERENCES IN NEUROBEHAVIORAL PERFORMANCE IN RESPONSE TO INCREASING HOMEOSTATIC SLEEP PRESSURE. Chronobiology International, 2010, 27, 922-933.	0.9	17
95	The evidence that cyclic alternating pattern subtypes affect cognitive functioning is very weak. Sleep Medicine, 2010, 11, 803.	0.8	2
96	Plasma lactate accumulation is reduced during incremental exercise in untrained women compared with untrained men. European Journal of Applied Physiology, 2007, 101, 91-96.	1.2	11
97	Maximal oxygen uptake and lactate metabolism are normal in chronic fatigue syndrome. Medicine and Science in Sports and Exercise, 2002, 34, 51-56.	0.2	83