Rossella Menghini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1627550/publications.pdf

Version: 2024-02-01

65 papers

8,278 citations

201385 27 h-index 128067 60 g-index

66 all docs 66
docs citations

66 times ranked 18664 citing authors

#	Article	IF	CITATIONS
1	COVID-19–Associated Endothelial Dysfunction and Microvascular Injury. Cardiac Electrophysiology Clinics, 2022, 14, 21-28.	0.7	9
2	Enterocyte superoxide dismutase 2 deletion drives obesity. IScience, 2022, 25, 103707.	1.9	4
3	ITCH E3 ubiquitin ligase downregulation compromises hepatic degradation of branched-chain amino acids. Molecular Metabolism, 2022, 59, 101454.	3.0	5
4	Restoration of renal TIMP3 levels via genetics and pharmacological approach prevents experimental diabetic nephropathy. Clinical and Translational Medicine, 2021, 11, e305.	1.7	7
5	Alterations in Rev-ERBα/BMAL1 ratio and glycated hemoglobin in rotating shift workers: the EuRhythDia study. Acta Diabetologica, 2021, 58, 1111-1117.	1.2	22
6	Inhibition of Lysine 63 Ubiquitination Prevents the Progression of Renal Fibrosis in Diabetic DBA/2J Mice. International Journal of Molecular Sciences, 2021, 22, 5194.	1.8	4
7	TIMP3 involvement and potentiality in the diagnosis, prognosis and treatment of diabetic nephropathy. Acta Diabetologica, 2021, 58, 1587-1594.	1.2	8
8	A Serum Resistin and Multicytokine Inflammatory Pathway Is Linked With and Helps Predict All-cause Death in Diabetes. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e4350-e4359.	1.8	5
9	The feeding behaviour of Amyotrophic Lateral Sclerosis mouse models is modulated by the Ca ²⁺ â€activated K _{Ca} 3.1 channels. British Journal of Pharmacology, 2021, 178, 4891-4906.	2.7	8
10	High Sensitivity C-Reactive Protein Increases the Risk of Carotid Plaque Instability in Male Dyslipidemic Patients. Diagnostics, 2021, 11, 2117.	1.3	3
11	Metabolic aspects of cardiovascular diseases: Is FoxO1 a player or a target?. International Journal of Biochemistry and Cell Biology, 2020, 118, 105659.	1.2	18
12	P0972INHIBITION OF LYSINE63 UBIQUITINATION PREVENTS THE PROGRESSION OF RENAL FIBROSIS IN DIABETIC NEPHROPATHY IN VITRO AND IN VIVO. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
13	Cross-omics analysis revealed gut microbiome-related metabolic pathways underlying atherosclerosis development after antibiotics treatment. Molecular Metabolism, 2020, 36, 100976.	3.0	46
14	Timp3 deficiency affects the progression of DEN-related hepatocellular carcinoma during diet-induced obesity in mice. Acta Diabetologica, 2019, 56, 1265-1274.	1.2	6
15	MicroRNA Manipulation to Boost Endothelial Regeneration: Are We Ready for the Next Steps?. Diabetes, 2019, 68, 268-270.	0.3	1
16	Chronic Kidney Disease Is Linked to Carotid Nodular Calcification, An Unstable Plaque Not Correlated to Inflammation., 2019, 10, 71.		14
17	Soluble ST2 is a biomarker for cardiovascular mortality related to abnormal glucose metabolism in high-risk subjects. Acta Diabetologica, 2019, 56, 273-280.	1.2	19
18	Proteomic and metabolomic characterization of streptozotocin-induced diabetic nephropathy in TIMP3-deficient mice. Acta Diabetologica, 2018, 55, 121-129.	1.2	25

#	Article	IF	Citations
19	MicroRNA 221/222 cluster kicks out Timp-3 to inflame the liver. EBioMedicine, 2018, 37, 7-8.	2.7	3
20	2-hydroxycaproate predicts cardiovascular mortality in patients with atherosclerotic disease. Atherosclerosis, 2018, 277, 179-185.	0.4	6
21	C-peptide: A predictor of cardiovascular mortality in subjects with established atherosclerotic disease. Diabetes and Vascular Disease Research, 2017, 14, 395-399.	0.9	27
22	Carotid plaque instability is not related to quantity but to elemental composition of calcification. Nutrition, Metabolism and Cardiovascular Diseases, 2017, 27, 768-774.	1.1	28
23	Hepatocyte specific TIMP3 expression prevents diet dependent fatty liver disease and hepatocellular carcinoma. Scientific Reports, 2017, 7, 6747.	1.6	26
24	MicroRNA 21 is up-regulated in adipose tissue of obese diabetic subjects. Nutrition and Healthy Aging, 2017, 4, 141-145.	0.5	26
25	A Role for Timp3 in Microbiota-Driven Hepatic Steatosis and Metabolic Dysfunction. Cell Reports, 2016, 16, 731-743.	2.9	18
26	Posttranslational modulation of FoxO1 contributes to cardiac remodeling in post-ischemic heart failure. Atherosclerosis, 2016, 249, 148-156.	0.4	20
27	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
28	A score including ADAM17 substrates correlates to recurring cardiovascular event in subjects with atherosclerosis. Atherosclerosis, 2015, 239, 459-464.	0.4	29
29	FoxO1 regulates asymmetric dimethylarginine via downregulation of dimethylaminohydrolase 1 in human endothelial cells and subjects with atherosclerosis. Atherosclerosis, 2015, 242, 230-235.	0.4	24
30	TIMP3 interplays with apelin to regulate cardiovascular metabolism in hypercholesterolemic mice. Molecular Metabolism, 2015, 4, 741-752.	3.0	23
31	IL-21 Is a Major Negative Regulator of IRF4-Dependent Lipolysis Affecting Tregs in Adipose Tissue and Systemic Insulin Sensitivity. Diabetes, 2014, 63, 2086-2096.	0.3	49
32	MicroRNAs in vascular aging and atherosclerosis. Ageing Research Reviews, 2014, 17, 68-78.	5.0	101
33	MiR-216a: a link between endothelial dysfunction and autophagy. Cell Death and Disease, 2014, 5, e1029-e1029.	2.7	122
34	ITCH Deficiency Protects From Diet-Induced Obesity. Diabetes, 2014, 63, 550-561.	0.3	24
35	Loss of TIMP3 exacerbates atherosclerosis in ApoE null mice. Atherosclerosis, 2014, 235, 438-443.	0.4	46
36	Toll-Like Receptor 4 Mediates Endothelial Cell Activation Through NF-κB but Is Not Associated with Endothelial Dysfunction in Patients with Rheumatoid Arthritis. PLoS ONE, 2014, 9, e99053.	1.1	35

#	Article	IF	CITATIONS
37	Expression of tissue inhibitor of metalloprotease 3 is reduced in ischemic but not neuropathic ulcers from patients with type 2 diabetes mellitus. Acta Diabetologica, 2013, 50, 907-910.	1.2	29
38	Regulation of TIMP3 in diabetic nephropathy: a role for microRNAs. Acta Diabetologica, 2013, 50, 965-969.	1.2	74
39	The role of ADAM17 in metabolic inflammation. Atherosclerosis, 2013, 228, 12-17.	0.4	89
40	MicroRNAs in Endothelial Senescence and Atherosclerosis. Journal of Cardiovascular Translational Research, 2013, 6, 924-930.	1.1	45
41	Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay. EMBO Molecular Medicine, 2013, 5, 441-455.	3.3	83
42	Overexpression of Tissue Inhibitor of Metalloproteinase 3 in Macrophages Reduces Atherosclerosis in Low-Density Lipoprotein Receptor Knockout Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 74-81.	1.1	68
43	TIMP3 Overexpression in Macrophages Protects From Insulin Resistance, Adipose Inflammation, and Nonalcoholic Fatty Liver Disease in Mice. Diabetes, 2012, 61, 454-462.	0.3	66
44	sPLA2: Linking atherosclerosis to aneurysm progression. Atherosclerosis, 2011, 214, 41-42.	0.4	0
45	miR-146a is modulated in human endothelial cell with aging. Atherosclerosis, 2011, 217, 326-330.	0.4	168
46	MicroPPARticle in atherosclerosis: Guilty or innocent by-standers?. Atherosclerosis, 2011, 218, 21-22.	0.4	1
47	Decreased IRS2 and TIMP3 Expression in Monocytes From Offspring of Type 2 Diabetic Patients Is Correlated With Insulin Resistance and Increased Intima-Media Thickness. Diabetes, 2011, 60, 3265-3270.	0.3	26
48	Increased tumor necrosis factor \hat{l} ±-converting enzyme activity induces insulin resistance and hepatosteatosis in mice. Hepatology, 2010, 51, 103-110.	3.6	80
49	TIMP3 Is Reduced in Atherosclerotic Plaques From Subjects With Type 2 Diabetes and Increased by SirT1. Diabetes, 2009, 58, 2396-2401.	0.3	132
50	MicroRNA 217 Modulates Endothelial Cell Senescence via Silent Information Regulator 1. Circulation, 2009, 120, 1524-1532.	1.6	438
51	Tissue Inhibitor of Metalloproteinase 3 Deficiency Causes Hepatic Steatosis and Adipose Tissue Inflammation in Mice. Gastroenterology, 2009, 136, 663-672.e4.	0.6	103
52	Transgenic mice overexpressing human G972R IRSâ€1 show impaired insulin action and insulin secretion Journal of Cellular and Molecular Medicine, 2008, 12, 2096-2106.	1.6	25
53	Insulin Resistance Affects Gene Expression in Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, e7-9.	1.1	2
54	Mice Heterozygous for Tumor Necrosis Factor-α Converting Enzyme Are Protected From Obesity-Induced Insulin Resistance and Diabetes. Diabetes, 2007, 56, 2541-2546.	0.3	104

#	Article	IF	Citations
55	Inflammation and macrophage infiltration in adipose tissue: A link between diabetes and atherosclerosis. International Congress Series, 2007, 1303, 23-30.	0.2	0
56	Interaction of DIO2 T92A and PPAR \hat{I}^3 2 P12A Polymorphisms in the Modulation of Metabolic Syndrome**. Obesity, 2007, 15, 2889-2895.	1.5	24
57	Letter to the Editor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 431-432.	1.1	7
58	Benfotiamine Counteracts Glucose Toxicity Effects on Endothelial Progenitor Cell Differentiation via Akt/FoxO Signaling. Diabetes, 2006, 55, 2231-2237.	0.3	124
59	Timp3 deficiency in insulin receptor-haploinsufficient mice promotes diabetes and vascular inflammation via increased TNF-Â. Journal of Clinical Investigation, 2005, 115, 3494-3505.	3.9	141
60	Phosphorylation of GATA2 by Akt Increases Adipose Tissue Differentiation and Reduces Adipose Tissue–Related Inflammation. Circulation, 2005, 111, 1946-1953.	1.6	88
61	G972R IRS-1 Variant Impairs Insulin Regulation of Endothelial Nitric Oxide Synthase in Cultured Human Endothelial Cells. Circulation, 2004, 109, 399-405.	1.6	104
62	Insulin-Dependent Activation of Endothelial Nitric Oxide Synthase Is Impaired by O-Linked Glycosylation Modification of Signaling Proteins in Human Coronary Endothelial Cells. Circulation, 2002, 106, 466-472.	1.6	330
63	Replacement of a Metabolic Pathway for Large-Scale Production of Lactic Acid from Engineered Yeasts. Applied and Environmental Microbiology, 1999, 65, 4211-4215.	1.4	378
64	Regulation of the expression of the Kluyveromyces lactis PDC1 gene: carbon source-responsive elements and autoregulation. Yeast, 1999, 15, 361-370.	0.8	28
65	Regulation of the expression of the Kluyveromyces lactis PDC1 gene: carbon source-responsive elements and autoregulation., 1999, 15, 361.		1