Yingliang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1627531/publications.pdf Version: 2024-02-01

YINCHANG LIU

#	Article	IF	CITATIONS
1	Key to intimately coupling metal chalcogenides with a carbon nanonetwork for potassium-ion storage. Journal of Materials Chemistry A, 2022, 10, 8958-8965.	5.2	6
2	Cascade Resonance Energy Transfer for the Construction of Nanoparticles with Multicolor Long Afterglow in Aqueous Solutions for Information Encryption and Bioimaging. Advanced Optical Materials, 2022, 10, .	3.6	43
3	Construction of Mixed Ionicâ€Electronic Conducting Scaffolds in Zn Powder: A Scalable Route to Dendriteâ€Free and Flexible Zn Anodes. Advanced Materials, 2022, 34, e2200860.	11.1	54
4	Modulating the local structure of glass to promote <i>in situ</i> precipitation of perovskite CsPbBr ₃ quantum dots by introducing a network modifier. Journal of Materials Chemistry C, 2022, 10, 8634-8641.	2.7	7
5	A rapid construction strategy of NaYF ₄ :Yb,Er@CDs nanocomposites for dual-mode anti-counterfeiting. Materials Advances, 2022, 3, 4542-4547.	2.6	6
6	From Lychee Seeds to Hierarchical Fe ₃ O ₄ /Carbon Composite Anodes for Lithium-Ion Batteries: A High Additional Value Conversion-Based Self-Assembly Strategy. Energy & Fuels, 2022, 36, 5027-5035.	2.5	2
7	Different Kinds of Citric Acid Based Carbon Dots and Their Enhancement of the Growth of Italian Lettuce. ACS Agricultural Science and Technology, 2022, 2, 684-692.	1.0	2
8	Carbon Dots in Hydroxy Fluorides: Achieving Multicolor Long-Wavelength Room-Temperature Phosphorescence and Excellent Stability via Crystal Confinement. Nano Letters, 2022, 22, 5127-5136.	4.5	46
9	Controllable Synthesis of Carbon Dots@CaCO ₃ Composites: Tunable Morphology, UV Absorption Properties, and Application as an Ultraviolet Absorber. Crystal Growth and Design, 2022, 22, 4357-4365.	1.4	8
10	In Situ Growth of High-Quality CsPbBr ₃ Quantum Dots with Unusual Morphology inside a Transparent Glass with a Heterogeneous Crystallization Environment for Wide Gamut Displays. ACS Applied Materials & Interfaces, 2022, 14, 30029-30038.	4.0	17
11	Fluorescent Nanoparticles for Super-Resolution Imaging. Chemical Reviews, 2022, 122, 12495-12543.	23.0	82
12	Synthesis of Carbon Dots with Carbogenic π-Conjugated Domains for Full-Band UV Shielding. ACS Applied Nano Materials, 2022, 5, 9140-9149.	2.4	10
13	Calcium-chloride-assisted approach towards green and sustainable synthesis of hierarchical porous carbon microspheres for high-performance supercapacitive energy storage. Journal of Colloid and Interface Science, 2021, 582, 159-166.	5.0	22
14	Facile construction of uniform ultramicropores in porous carbon for advanced sodium-ion battery. Journal of Colloid and Interface Science, 2021, 582, 852-858.	5.0	24
15	Carbon dots as light converter for plant photosynthesis: Augmenting light coverage and quantum yield effect. Journal of Hazardous Materials, 2021, 410, 124534.	6.5	69
16	The changing structure by component: Biomass-based porous carbon for high-performance supercapacitors. Journal of Colloid and Interface Science, 2021, 585, 778-786.	5.0	56
17	Propelling electrochemical kinetics of transition metal oxide for high-rate lithium-ion battery through in situ deoxidation. Journal of Colloid and Interface Science, 2021, 587, 590-596.	5.0	22
18	<i>Salvia Miltiorrhiza</i> -Derived Carbon Dots as Scavengers of Reactive Oxygen Species for Reducing Oxidative Damage of Plants. ACS Applied Nano Materials, 2021, 4, 113-120.	2.4	44

#	Article	IF	CITATIONS
19	KCl-assisted activation: Moringa oleifera branch-derived porous carbon for high performance supercapacitor. New Journal of Chemistry, 2021, 45, 5712-5719.	1.4	10
20	Architecture engineering of carbonaceous anodes for highâ€rate potassiumâ€ion batteries. , 2021, 3, 554-581.		39
21	Amine-Functionalized Carbon Cloth Host for Dendrite-Free Zn Metal Anodes. ACS Applied Energy Materials, 2021, 4, 4482-4488.	2.5	22
22	Boosting zinc ion energy storage capability of inert MnO cathode by defect engineering. Journal of Colloid and Interface Science, 2021, 594, 540-549.	5.0	43
23	Multiemissive Room-Temperature Phosphorescent Carbon Dots@ZnAl ₂ O ₄ Composites by Inorganic Defect Triplet-State Energy Transfer. ACS Applied Materials & Interfaces, 2021, 13, 34705-34713.	4.0	34
24	Antibacterial Activity and Synergetic Mechanism of Carbon Dots against Gram-Positive and -Negative Bacteria. ACS Applied Bio Materials, 2021, 4, 6937-6945.	2.3	51
25	Capillary enhanced hydrophilic block carbon material for binder-free supercapacitor electrode. Journal of Power Sources, 2021, 507, 230289.	4.0	9
26	Nearâ€Infraredâ€Excited Multicolor Afterglow in Carbon Dotsâ€Based Roomâ€Temperature Afterglow Materials. Angewandte Chemie, 2021, 133, 22427-22433.	1.6	8
27	Nearâ€Infraredâ€Excited Multicolor Afterglow in Carbon Dotsâ€Based Roomâ€Temperature Afterglow Materials. Angewandte Chemie - International Edition, 2021, 60, 22253-22259.	7.2	73
28	A mild method to prepare nitrogen-rich interlaced porous carbon nanosheets for high-performance supercapacitors. Journal of Colloid and Interface Science, 2021, 599, 381-389.	5.0	40
29	Mild synthesis of superadhesive hydrogel electrolyte with low interfacial resistance and enhanced ionic conductivity for flexible zinc ion battery. Journal of Colloid and Interface Science, 2021, 600, 586-593.	5.0	32
30	Homogeneous triple-phase interfaces enabling one-pot route to metal compound/carbon composites. Journal of Colloid and Interface Science, 2021, 599, 271-279.	5.0	3
31	Hemicellulose-triggered high-yield synthesis of carbon dots from biomass. New Journal of Chemistry, 2021, 45, 5484-5490.	1.4	13
32	Surface chemical functionality of carbon dots: influence on the structure and energy storage performance of the layered double hydroxide. RSC Advances, 2021, 11, 10785-10793.	1.7	3
33	Construction of Carbon Dots with Colorâ€Tunable Aggregationâ€Induced Emission by Nitrogenâ€Induced Intramolecular Charge Transfer. Advanced Materials, 2021, 33, e2104872.	11.1	112
34	Facile synthesis of the desired red phosphor Li ₂ Ca ₂ Mg ₂ Si ₂ N ₆ Eu ²⁺ for high CRI white LEDs and plant growth LED device. Journal of the American Ceramic Society, 2020, 103, 1773-1781	1.9	33
35	A review on the effects of carbon dots in plant systems. Materials Chemistry Frontiers, 2020, 4, 437-448.	3.2	139
36	Amplified light harvesting for enhancing Italian lettuce photosynthesis using water soluble silicon quantum dots as artificial antennas. Nanoscale, 2020, 12, 155-166.	2.8	35

#	Article	IF	CITATIONS
37	Enhancement of Fluorescence Emission for Tricolor Quantum Dots Assembled in Polysiloxane toward Solar Spectrumâ€Simulated White Lightâ€Emitting Devices. Small, 2020, 16, e1905266.	5.2	16
38	Engineering of nanonetwork-structured carbon to enable high-performance potassium-ion storage. Journal of Colloid and Interface Science, 2020, 561, 195-202.	5.0	13
39	Active Nanointerfaceâ€Assisted Coâ€Assembly to Yolk–Shell Au@Ordered Mesoporous Carbon Nanospheres. Advanced Materials Interfaces, 2020, 7, 1901703.	1.9	3
40	Surface functional carbon dots: chemical engineering applications beyond optical properties. Journal of Materials Chemistry C, 2020, 8, 16282-16294.	2.7	36
41	Non-tubular-biomass-derived nitrogen-doped carbon microtubes for ultrahigh-area-capacity lithium-ion batteries. Journal of Colloid and Interface Science, 2020, 580, 638-644.	5.0	22
42	A general strategy for metal oxide nanoparticles embedded into heterogeneous carbon nanosheets as high-rate lithium-ion battery anodes. Journal of Materials Chemistry A, 2020, 8, 25382-25389.	5.2	13
43	Anchoring Carbon Nanodots onto Nanosilica for Phosphorescence Enhancement and Delayed Fluorescence Nascence in Solid and Liquid States. Small, 2020, 16, e2005228.	5.2	61
44	pH-Responsive carbon dots with red emission for real-time and visual detection of amines. Journal of Materials Chemistry C, 2020, 8, 11563-11571.	2.7	72
45	Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design. Nature Communications, 2020, 11, 5591.	5.8	202
46	Regulating the morphology and luminescence properties of CsPbBr ₃ perovskite quantum dots through the rigidity of glass network structure. Journal of Materials Chemistry C, 2020, 8, 17374-17382.	2.7	41
47	A Surface Seâ€&ubstituted LiCo[O _{2â^'} <i>_δ</i> Se <i>_δ(i>] Cathode with Ultrastable Highâ€Voltage Cycling in Pouch Fullâ€Cells. Advanced Materials, 2020, 32, e2005182.</i>	11.1	110
48	Facile fabrication of a CD/PVA composite polymer to access light-responsive shape-memory effects. Journal of Materials Chemistry C, 2020, 8, 8935-8941.	2.7	22
49	Direct carbonization of black liquor powders into 3D honeycomb-like porous carbons with a tunable disordered degree for sodium-ion batteries. New Journal of Chemistry, 2020, 44, 10697-10702.	1.4	3
50	Promoted off-on recognition of H2O2 based on the fluorescence of silicon quantum dots assembled two-dimensional PEG-MnO2 nanosheets hybrid nanoprobe. Mikrochimica Acta, 2020, 187, 347.	2.5	15
51	Promoting the Growth of Mung Bean Plants through Uptake and Light Conversion of NaYF ₄ :Yb,Er@CDs Nanocomposites. ACS Sustainable Chemistry and Engineering, 2020, 8, 9751-9762.	3.2	40
52	Facile Synthesis of Core-Shell Structured SiO2@Carbon Composite Nanorods for High-Performance Lithium-Ion Batteries. Nanomaterials, 2020, 10, 513.	1.9	17
53	Temperature-responsive conversion of thermally activated delayed fluorescence and room-temperature phosphorescence of carbon dots in silica. Journal of Materials Chemistry C, 2020, 8, 5744-5751.	2.7	86
54	Multifunctional molybdenum disulfide-copper nanocomposite that enhances the antibacterial activity, promotes rice growth and induces rice resistance. Journal of Hazardous Materials, 2020, 394, 122551.	6.5	27

#	Article	IF	CITATIONS
55	Liquid–liquid micromixing strategy enables low KOH-amount synthesis of ultrahighly porous carbon for zinc-ion storage. SN Applied Sciences, 2020, 2, 1.	1.5	1
56	Carbon Dots as a Protective Agent Alleviating Abiotic Stress on Rice (<i>Oryza sativa</i> L.) through Promoting Nutrition Assimilation and the Defense System. ACS Applied Materials & Interfaces, 2020, 12, 33575-33585.	4.0	56
57	Glass-ceramics with thermally stable blue-red emission for high-power horticultural LED applications. Journal of Materials Chemistry C, 2020, 8, 3996-4002.	2.7	19
58	PVA-Coated Fluorescent Carbon Dot Nanocapsules as an Optical Amplifier for Enhanced Photosynthesis of Lettuce. ACS Sustainable Chemistry and Engineering, 2020, 8, 3938-3949.	3.2	41
59	Far-Red Carbon Dots as Efficient Light-Harvesting Agents for Enhanced Photosynthesis. ACS Applied Materials & Interfaces, 2020, 12, 21009-21019.	4.0	102
60	Selfâ€Quenchingâ€Resistant Red Emissive Carbon Dots with High Stability for Warm White Lightâ€Emitting Diodes with a High Color Rendering Index. Advanced Optical Materials, 2020, 8, 2000251.	3.6	56
61	Polyacrylonitrile-based highly porous carbon materials for exceptional hydrogen storage. International Journal of Hydrogen Energy, 2019, 44, 23210-23215.	3.8	20
62	Component Degradation-Enabled Preparation of Biomass-Based Highly Porous Carbon Materials for Energy Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 15259-15266.	3.2	36
63	Bark-Based 3D Porous Carbon Nanosheet with Ultrahigh Surface Area for High Performance Supercapacitor Electrode Material. ACS Sustainable Chemistry and Engineering, 2019, 7, 13827-13835.	3.2	63
64	Synthesis of dual-emissive carbon dots with a unique solvatochromism phenomenon. Journal of Colloid and Interface Science, 2019, 555, 607-614.	5.0	66
65	Extraordinary Thickness-Independent Electrochemical Energy Storage Enabled by Cross-Linked Microporous Carbon Nanosheets. ACS Applied Materials & Interfaces, 2019, 11, 26946-26955.	4.0	51
66	Precipitating CsPbBr ₃ quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays. Journal of Materials Chemistry C, 2019, 7, 13139-13148.	2.7	68
67	Hierarchically Porous Carbon Derived from <i>Neolamarckia cadamba</i> for Electrochemical Capacitance and Hydrogen Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 15385-15393.	3.2	44
68	Improving the luminous efficacy and resistance to blue laser irradiation of phosphor-in-glass based solid state laser lighting through employing dual-functional sapphire plate. Journal of Materials Chemistry C, 2019, 7, 354-361.	2.7	70
69	Synthesis of Silicon Quantum Dots with Highly Efficient Full-Band UV Absorption and Their Applications in Antiyellowing and Resistance of Photodegradation. ACS Applied Materials & Interfaces, 2019, 11, 6634-6643.	4.0	45
70	Mixed-Biomass Wastes Derived Hierarchically Porous Carbons for High-Performance Electrochemical Energy Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 10393-10402.	3.2	78
71	KNO3-mediated synthesis of high-surface-area polyacrylonitrile-based carbon material for exceptional supercapacitors. Carbon, 2019, 152, 120-127.	5.4	38
72	Construction of NaYF ₄ :Yb,Er(Tm)@CDs composites for enhancing red and NIR upconversion emission. Journal of Materials Chemistry C, 2019, 7, 6231-6235.	2.7	32

#	Article	IF	CITATIONS
73	Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nature Communications, 2019, 10, 1789.	5.8	419
74	Solid-state silicon nanoparticles with color-tunable photoluminescence and multifunctional applications. Journal of Materials Chemistry C, 2019, 7, 5962-5969.	2.7	15
75	A review of rechargeable batteries for portable electronic devices. InformaÄnÃ-Materiály, 2019, 1, 6-32.	8.5	694
76	A Universal Strategy for Activating the Multicolor Roomâ€Temperature Afterglow of Carbon Dots in a Boric Acid Matrix. Angewandte Chemie, 2019, 131, 7356-7361.	1.6	62
77	A Universal Strategy for Activating the Multicolor Roomâ€Temperature Afterglow of Carbon Dots in a Boric Acid Matrix. Angewandte Chemie - International Edition, 2019, 58, 7278-7283.	7.2	266
78	Improving moisture stability of SrLiAl3N4:Eu2+ through phosphor-in-glass approach to realize its application in plant growing LED device. Journal of Colloid and Interface Science, 2019, 545, 195-199.	5.0	24
79	Synthesis of Porous Carbon Material with Suitable Graphitization Strength for High Electrochemical Capacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 6601-6610.	3.2	46
80	Facile construction of hollow carbon nanosphere-interconnected network for advanced sodium-ion battery anode. Journal of Colloid and Interface Science, 2019, 546, 53-59.	5.0	31
81	Construction of NaYF4:Eu@carbon dots nanocomposites for multifunctional applications. Journal of Colloid and Interface Science, 2019, 543, 156-163.	5.0	12
82	Highly efficient and dual broad emitting light convertor: an option for next-generation plant growth LEDs. Journal of Materials Chemistry C, 2019, 7, 3617-3622.	2.7	35
83	Natural Plant Template-Derived Cellular Framework Porous Carbon as a High-Rate and Long-Life Electrode Material for Energy Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 5845-5855.	3.2	53
84	Carbon Dot-Silica Nanoparticle Composites for Ultralong Lifetime Phosphorescence Imaging in Tissue and Cells at Room Temperature. Chemistry of Materials, 2019, 31, 9887-9894.	3.2	137
85	A universal KOH-free strategy towards nitrogen-doped carbon nanosheets for high-rate and high-energy storage devices. Journal of Materials Chemistry A, 2019, 7, 26469-26478.	5.2	32
86	Rich N/O/S co-doped porous carbon with a high surface area from silkworm cocoons for superior supercapacitors. New Journal of Chemistry, 2019, 43, 19372-19378.	1.4	5
87	Advanced nanonetwork-structured carbon materials for high-performance formaldehyde capture. Journal of Colloid and Interface Science, 2019, 537, 562-568.	5.0	20
88	Small nitrogen-doped carbon dots as efficient nanoenhancer for boosting the electrochemical performance of three-dimensional graphene. Journal of Colloid and Interface Science, 2019, 536, 628-637.	5.0	34
89	Double carbon dot assembled mesoporous aluminas: solid-state dual-emission photoluminescence and multifunctional applications. Journal of Materials Chemistry C, 2018, 6, 2495-2501.	2.7	46
90	Enhanced luminescence performance of CaO:Ce ³⁺ ,Li ⁺ ,F ^{â^'} phosphor and its phosphor-in-glass based high-power warm LED properties. Journal of Materials Chemistry C, 2018, 6, 4077-4086.	2.7	24

Yingliang Liu

#	Article	IF	CITATIONS
91	Largeâ€Scale Oneâ€Step Synthesis of Carbon Dots from Yeast Extract Powder and Construction of Carbon Dots/PVA Fluorescent Shape Memory Material. Advanced Optical Materials, 2018, 6, 1701150.	3.6	76
92	Ultrastable red-emitting phosphor-in-glass for superior high-power artificial plant growth LEDs. Journal of Materials Chemistry C, 2018, 6, 1738-1745.	2.7	95
93	Co-substitution in Ca _{1â[~]x} Y _x Al _{12â[~]x} Mg _x O ₁₉ phosphors: local structure evolution, photoluminescence tuning and application for plant growth LEDs. Journal of Materials Chemistry C. 2018. 6. 4217-4224.	2.7	83
94	Rapid room-temperature preparation of MoO _{3â^'x} quantum dots by ultraviolet irradiation for photothermal treatment and glucose detection. New Journal of Chemistry, 2018, 42, 18533-18540.	1.4	33
95	Rational Synthesis of Highly Porous Carbon from Waste Bagasse for Advanced Supercapacitor Application. ACS Sustainable Chemistry and Engineering, 2018, 6, 15325-15332.	3.2	82
96	Enhanced Biological Photosynthetic Efficiency Using Lightâ€Harvesting Engineering with Dualâ€Emissive Carbon Dots. Advanced Functional Materials, 2018, 28, 1804004.	7.8	189
97	Bioinspired Highly Crumpled Porous Carbons with Multidirectional Porosity for High Rate Performance Electrochemical Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 12716-12726.	3.2	31
98	Preparation and properties of dual-mode luminescent NaYF ₄ :Yb,Tm@SiO ₂ /carbon dot nanocomposites. Journal of Materials Chemistry C, 2018, 6, 10360-10366.	2.7	26
99	Large-scale synthesis of porous carbon <i>via</i> one-step CuCl ₂ activation of rape pollen for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 12046-12055.	5.2	126
100	Near-Ultraviolet to Near-Infrared Fluorescent Nitrogen-Doped Carbon Dots with Two-Photon and Piezochromic Luminescence. ACS Applied Materials & Interfaces, 2018, 10, 27920-27927.	4.0	63
101	Cation–anion substitution induced spectral tuning and thermal stability optimization in Sr ₂ SiO ₄ :Eu phosphors. RSC Advances, 2017, 7, 8230-8235.	1.7	10
102	Eu ³⁺ â€Doped Phosphorâ€inâ€Class: A Route toward Tunable Multicolor Materials for Nearâ€UV Highâ€Power Warmâ€White LEDs. Advanced Optical Materials, 2017, 5, 1600910.	3.6	92
103	Hierarchical NiO mesocrystals with tuneable high-energy facets for pseudocapacitive charge storage. Journal of Materials Chemistry A, 2017, 5, 6921-6927.	5.2	38
104	Luminescent properties and energy transfer of luminescent carbon dots assembled mesoporous Al2O3: Eu3+ co-doped materials for temperature sensing. Journal of Colloid and Interface Science, 2017, 496, 8-15.	5.0	33
105	Interconnected 3 D Network of Grapheneâ€Oxide Nanosheets Decorated with Carbon Dots for Highâ€Performance Supercapacitors. ChemSusChem, 2017, 10, 2626-2634.	3.6	75
106	Solidâ€State Carbon Dots with Red Fluorescence and Efficient Construction of Dualâ€Fluorescence Morphologies. Small, 2017, 13, 1700075.	5.2	165
107	Room temperature phosphorescence from moisture-resistant and oxygen-barred carbon dot aggregates. Journal of Materials Chemistry C, 2017, 5, 6243-6250.	2.7	91
108	A dual-emitting core–shell carbon dot–silica–phosphor composite for LED plant grow light. RSC Advances, 2017, 7, 16662-16667.	1.7	24

#	Article	IF	CITATIONS
109	Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 550, 487-491.	13.7	548
110	Pollen derived blue fluorescent carbon dots for bioimaging and monitoring of nitrogen, phosphorus and potassium uptake in Brassica parachinensisÂL RSC Advances, 2017, 7, 33459-33465.	1.7	39
111	Bioimaging Application and Growth-Promoting Behavior of Carbon Dots from Pollen on Hydroponically Cultivated Rome Lettuce. ACS Omega, 2017, 2, 3958-3965.	1.6	73
112	Enhanced persistent properties of Mn ²⁺ activated CaZnOS. RSC Advances, 2017, 7, 38498-38505.	1.7	6
113	Ultrahigh-surface-area hierarchical porous carbon from chitosan: acetic acid mediated efficient synthesis and its application in superior supercapacitors. Journal of Materials Chemistry A, 2017, 5, 24775-24781.	5.2	149
114	Facile Synthesis of Highly Porous Carbon from Rice Husk. ACS Sustainable Chemistry and Engineering, 2017, 5, 7111-7117.	3.2	56
115	Towards efficient dual-emissive carbon dots through sulfur and nitrogen co-doped. Journal of Materials Chemistry C, 2017, 5, 8014-8021.	2.7	73
116	In Situ Topotactic Synthesis of Monodispersed Hierarchically Nanostructured Yttriumâ€Based Microspindles from a Mesocrystal Precursor. European Journal of Inorganic Chemistry, 2016, 2016, 3990-3993.	1.0	3
117	Tunable emission color and mixed valence state via the modified activator site in the AlN-doped Sr ₃ SiO ₅ :Eu phosphor. RSC Advances, 2016, 6, 33076-33082.	1.7	17
118	Facile one-step and high-yield synthesis of few-layered and hierarchically porous boron nitride nanosheets. RSC Advances, 2016, 6, 45402-45409.	1.7	7
119	Solid-state fluorescent composite phosphor based on cellulose grafted with carbon dots for temperature sensing. RSC Advances, 2016, 6, 90126-90131.	1.7	10
120	Preparation and characterization of a luminescent carbon dots grafted CaSiO ₃ :Eu ³⁺ phosphor for ratiometric fluorescent oxygen sensing. RSC Advances, 2016, 6, 98554-98562.	1.7	15
121	Synthesis of molecularly imprinted carbon dot grafted YVO4:Eu3+ for the ratiometric fluorescent determination of paranitrophenol. Biosensors and Bioelectronics, 2016, 86, 706-713.	5.3	94
122	Facile fabrication of rice husk based silicon dioxide nanospheres loaded with silver nanoparticles as a rice antibacterial agent. Scientific Reports, 2016, 6, 21423.	1.6	51
123	One-step preparation of carbon dot-grafted trisodium citrate dihydrate for tunable photoluminescence and white light-emitting diodes. RSC Advances, 2016, 6, 104724-104730.	1.7	4
124	Facile Synthesis of Three-Dimensional Heteroatom-Doped and Hierarchical Egg-Box-Like Carbons Derived from <i>Moringa oleifera</i> Branches for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 33060-33071.	4.0	137
125	Preparation and Properties of Carbon Dotâ€Grafted CaAl ₁₂ O ₁₉ :Mn ⁴⁺ Colorâ€Tunable Hybrid Phosphor. Advanced Optical Materials, 2016, 4, 427-434.	3.6	42
126	Transparent sunlight conversion film based on carboxymethyl cellulose and carbon dots. Carbohydrate Polymers, 2016, 151, 245-250.	5.1	67

#	Article	IF	CITATIONS
127	Preparation, characterization and oxygen sensing properties of luminescent carbon dots assembled mesoporous silica microspheres. Journal of Colloid and Interface Science, 2016, 478, 256-262.	5.0	35
128	Synthesis of hybrid Ni-Co oxide @ 3D carbon skeleton derived from pollen grains for advanced supercapacitors. Electrochimica Acta, 2016, 210, 695-703.	2.6	8
129	A Selfâ€Quenchingâ€Resistant Carbonâ€Dot Powder with Tunable Solidâ€State Fluorescence and Construction of Dualâ€Fluorescence Morphologies for White Lightâ€Emission. Advanced Materials, 2016, 28, 312-318.	11.1	527
130	Carbon dots-based fluorescent probe for "off-on―sensing of Hg(II) and I. Biosensors and Bioelectronics, 2016, 79, 531-535.	5.3	155
131	Three-dimensional honeycomb-like hierarchically structured carbon for high-performance supercapacitors derived from high-ash-content sewage sludge. Journal of Materials Chemistry A, 2015, 3, 15225-15234.	5.2	125
132	Unusual Concentration Induced Antithermal Quenching of the Bi2+ Emission from Sr2P2O7:Bi2+. Inorganic Chemistry, 2015, 54, 6028-6034.	1.9	50
133	Amorphous Ni–Co Binary Oxide with Hierarchical Porous Structure for Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2015, 7, 24419-24429.	4.0	82
134	Preparation of graphene oxide with silver nanowires to enhance antibacterial properties and cell compatibility. RSC Advances, 2015, 5, 85748-85755.	1.7	27
135	Preparation and properties of Sr2Si5N8:Eu2+–cellulose hybrid films for sunlight conversion. Cellulose, 2015, 22, 3337-3345.	2.4	13
136	Carbon dot grafted SrAl ₂ O ₄ :Eu,Dy dual-emitting phosphor for ratiometric temperature sensing. RSC Advances, 2015, 5, 89238-89243.	1.7	14
137	Insights into luminescence quenching and detecting trap distribution in Ba ₂ Si ₅ N ₈ :Eu ²⁺ phosphor with comprehensive considerations of temperature-dependent luminescence behaviors. Journal of Materials Chemistry C, 2015, 3, 9572-9579.	2.7	48
138	Infrared Brazing Fe3Al Using Ag-Based Filler Metals. Metallurgical and Materials Transactions A:	1.1	5

138 Physical Metallurgy and Materials Science, 2010, 41, 2836-2843.