Andrew W Norris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1627425/publications.pdf

Version: 2024-02-01

201674 149698 4,142 59 27 56 citations h-index g-index papers 63 63 63 6541 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Diabetes Device Downloading: Benefits and Barriers Among Youth With Type 1 Diabetes. Journal of Diabetes Science and Technology, 2023, 17, 381-389.	2.2	O
2	Lack of CFTR alters the ferret pancreatic ductal epithelial secretome and cellular proteome: Implications for exocrine/endocrine signaling. Journal of Cystic Fibrosis, 2022, 21, 172-180.	0.7	6
3	Small molecule SWELL1 complex induction improves glycemic control and nonalcoholic fatty liver disease in murine Type 2 diabetes. Nature Communications, 2022, 13, 784.	12.8	19
4	Oxidative stress and impaired insulin secretion in cystic fibrosis pig pancreas. Advances in Redox Research, 2022, 5, 100040.	2.1	4
5	Acute pancreatitis-induced islet dysfunction in ferrets. Pancreatology, 2021, 21, 839-847.	1.1	1
6	Exposure to Static Magnetic and Electric Fields Treats Type 2 Diabetes. Cell Metabolism, 2020, 32, 561-574.e7.	16.2	55
7	A tale of two pancreases: exocrine pathology and endocrine dysfunction. Diabetologia, 2020, 63, 2030-2039.	6.3	36
8	Incretin dysfunction and hyperglycemia in cystic fibrosis: Role of acyl-ghrelin. Journal of Cystic Fibrosis, 2019, 18, 557-565.	0.7	2
9	Is Cystic Fibrosis–related Diabetes Reversible? New Data on CFTR Potentiation and Insulin Secretion. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 261-263.	5.6	8
10	Fetal hyperglycemia acutely induces persistent insulin resistance in skeletal muscle. Journal of Endocrinology, 2019, 242, M1-M15.	2.6	12
11	Survival in a bad neighborhood: pancreatic islets in cystic fibrosis. Journal of Endocrinology, 2019, 241, R35-R50.	2.6	33
12	Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness. ELife, 2019, 8, .	6.0	54
13	Pancreatic and Islet Remodeling in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Knockout Ferrets. American Journal of Pathology, 2018, 188, 876-890.	3.8	20
14	SWELL1 is a glucose sensor regulating \hat{l}^2 -cell excitability and systemic glycaemia. Nature Communications, 2018, 9, 367.	12.8	74
15	A Novel Stomach-Pancreas Connection: More than Physical. EBioMedicine, 2018, 37, 25-26.	6.1	2
16	Development of a polarized pancreatic ductular cell epithelium for physiological studies. Journal of Applied Physiology, 2018, 125, 97-106.	2.5	10
17	Polyunsaturated fatty acid composition and childhood adversity: Independent correlates of depressive symptom persistence. Psychiatry Research, 2017, 256, 305-311.	3.3	6
18	CFTR Influences Beta Cell Function and Insulin Secretion Through Non-Cell Autonomous Exocrine-Derived Factors. Endocrinology, 2017, 158, 3325-3338.	2.8	59

#	Article	IF	CITATIONS
19	A Transient Metabolic Recovery from Early Life Glucose Intolerance in Cystic Fibrosis Ferrets Occurs During Pancreatic Remodeling. Endocrinology, 2016, 157, 1852-1865.	2.8	37
20	Nervous System Expression of PPARγ and Mutant PPARγ Has Profound Effects on Metabolic Regulation and Brain Development. Endocrinology, 2016, 157, 4266-4275.	2.8	14
21	Abnormal Glucose Tolerance in Infants and Young Children with Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 974-980.	5.6	77
22	Maternal Hyperglycemia Directly and Rapidly Induces Cardiac Septal Overgrowth in Fetal Rats. Journal of Diabetes Research, 2015, 2015, 1-11.	2.3	29
23	PET/CT imaging reveals unrivaled placental avidity for glucose compared to other tissues. Placenta, 2015, 36, 115-120.	1.5	4
24	Regulation of Glucose Tolerance and Sympathetic Activity by MC4R Signaling in the Lateral Hypothalamus. Diabetes, 2015, 64, 1976-1987.	0.6	62
25	Glycaemic regulation and insulin secretion are abnormal in cystic fibrosis pigs despite sparing of islet cell mass. Clinical Science, 2015, 128, 131-142.	4.3	64
26	Hepatic Mitochondrial Pyruvate Carrier 1 Is Required for Efficient Regulation of Gluconeogenesis and Whole-Body Glucose Homeostasis. Cell Metabolism, 2015, 22, 669-681.	16.2	193
27	Quantifying Insulin Sensitivity and Entero-Insular Responsiveness to Hyper- and Hypoglycemia in Ferrets. PLoS ONE, 2014, 9, e90519.	2.5	5
28	Angiotensin Il–induced cardiovascular load regulates cardiac remodeling and related gene expression in late-gestation fetal sheep. Pediatric Research, 2014, 75, 689-696.	2.3	8
29	Sympathetic Inhibition After Bariatric Surgery. Hypertension, 2014, 64, 235-236.	2.7	8
30	Hyperglycemia induces embryopathy, even in the absence of systemic maternal diabetes: An in vivo test of the fuel mediated teratogenesis hypothesis. Reproductive Toxicology, 2014, 46, 129-136.	2.9	32
31	Sex-specific programming of hypertension in offspring of late-gestation diabetic rats. Pediatric Research, 2012, 72, 352-361.	2.3	39
32	Peroxisome Proliferator-Activated Receptor \hat{I}^3 Decouples Fatty Acid Uptake from Lipid Inhibition of Insulin Signaling in Skeletal Muscle. Molecular Endocrinology, 2012, 26, 977-988.	3.7	21
33	A Second Chance for a PPARÎ ³ Targeted Therapy?. Circulation Research, 2012, 110, 8-11.	4.5	10
34	Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets. Journal of Clinical Investigation, 2012, 122, 3755-3768.	8.2	115
35	Modifying a high saturated fat diet with omegaâ€3 (nâ€3) polyâ€unsaturated fat improves vascular dysfunction and glucose intolerance. FASEB Journal, 2012, 26, 686.13.	0.5	0
36	Effect of Insulin and Dexamethasone on Fetal Assimilation of Maternal Glucose. Endocrinology, 2011, 152, 255-262.	2.8	14

#	Article	IF	CITATIONS
37	IUGR decreases PPAR \hat{I}^3 and SETD8 Expression in neonatal rat lung and these effects are ameliorated by maternal DHA supplementation. Early Human Development, 2010, 86, 785-791.	1.8	76
38	Localized Fetomaternal Hyperglycemia: Spatial and Kinetic Definition by Positron Emission Tomography. PLoS ONE, 2010, 5, e12027.	2.5	9
39	Programming of growth, insulin resistance and vascular dysfunction in offspring of late gestation diabetic rats. Clinical Science, 2009, 117, 129-138.	4.3	39
40	New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature, 2008, 454, 1000-1004.	27.8	964
41	Endogenous Peroxisome Proliferator-Activated Receptor-Î ³ Augments Fatty Acid Uptake in Oxidative Muscle. Endocrinology, 2008, 149, 5374-5383.	2.8	12
42	Action of epoxyeicosatrienoic acids on cellular function. American Journal of Physiology - Cell Physiology, 2007, 292, C996-C1012.	4.6	405
43	Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6676-6681.	7.1	543
44	Analysis of gene expression in pathophysiological states: Balancing false discovery and false negative rates. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 649-653.	7.1	52
45	Complications and Comorbidities of Type 2 Diabetes. Pediatric Annals, 2005, 34, 710-718.	0.8	5
46	Fatty Acid-Binding Proteins Inhibit Hydration of Epoxyeicosatrienoic Acids by Soluble Epoxide Hydrolaseâ€. Biochemistry, 2003, 42, 11762-11767.	2.5	37
47	Muscle-specific PPAR \hat{i} -deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. Journal of Clinical Investigation, 2003, 112, 608-618.	8.2	366
48	Role of Foxa-2 in adipocyte metabolism and differentiation. Journal of Clinical Investigation, 2003, 112, 345-356.	8.2	115
49	Very long chain n-3 and n-6 polyunsaturated fatty acids bind strongly to liver fatty acid-binding protein. Journal of Lipid Research, 2002, 43, 646-653.	4.2	42
50	Avoiding Nocturnal Hypoglycemia: Consideration of an Extra Injection at Bedtime. Annals of Internal Medicine, 2002, 136, 547.	3.9	1
51	Binding of Cytochrome P450 Monooxygenase and Lipoxygenase Pathway Products by Heart Fatty Acid-Binding Proteinâ€. Biochemistry, 2001, 40, 1070-1076.	2.5	71
52	Fluorometric Titration of the CRABPs., 1998, 89, 123-139.		13
53	[1] Generation and characterization of cellular retinoic acid-binding proteins from Escherichia coli expression systems. Methods in Enzymology, 1997, 282, 3-13.	1.0	1
54	The Isolation and Characterization of Purified Heterocomplexes of Recombinant Retinoic Acid Receptor and Retinoid X Receptor Ligand Binding Domainsâ€. Biochemistry, 1997, 36, 5669-5676.	2.5	20

ANDREW W NORRIS

#	Article	IF	CITATIONS
55	Conformationally Defined 6-s-trans-Retinoic Acid Analogs. 3. Structureâ Activity Relationships for Nuclear Receptor Binding, Transcriptional Activity, and Cancer Chemopreventive Activity. Journal of Medicinal Chemistry, 1996, 39, 3625-3635.	6.4	22
56	Structure/Function of Cytoplasmic Vitamin A-Binding Proteins. Annual Review of Nutrition, 1996, 16, 205-234.	10.1	101
57	Nuclear Magnetic Resonance Studies Demonstrate Differences in the Interaction of Retinoic Acid with Two Highly Homologous Cellular Retinoic Acid Binding Proteins. Biochemistry, 1995, 34, 15564-15573.	2.5	14
58	Conformationally Defined 6-s-trans-Retinoic Acid Analogs. 2. Selective Agonists for Nuclear Receptor Binding and Transcriptional Activity. Journal of Medicinal Chemistry, 1995, 38, 2302-2310.	6.4	19
59	Measurement of subnanomolar retinoic acid binding affinities for cellular retinoic acid binding proteins by fluorometric titration. BBA - Proteins and Proteomics, 1994, 1209, 10-18.	2.1	71