William R A Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/162716/publications.pdf

Version: 2024-02-01

49 papers

5,094 citations

145106 33 h-index 223390 49 g-index

51 all docs

51 docs citations

51 times ranked

6851 citing authors

#	Article	IF	CITATIONS
1	Mutation and selection explain why many eukaryotic centromeric DNA sequences are often AÂ+ÂT rich. Nucleic Acids Research, 2022, 50, 579-596.	6.5	6
2	Comparison and optimization of ten phage encoded serine integrases for genome engineering in Saccharomyces cerevisiae. BMC Biotechnology, 2016, 16, 13.	1.7	30
3	The genomic and phenotypic diversity of Schizosaccharomyces pombe. Nature Genetics, 2015, 47, 235-241.	9.4	174
4	Kinetochore assembly and heterochromatin formation occur autonomously inSchizosaccharomyces pombe. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1903-1908.	3.3	16
5	Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Research, 2013, 21, 101-106.	1.0	37
6	Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnology, 2013, 13, 87.	1.7	69
7	Unsuccessful attempt at gene-editing by homologous recombination in the zebrafish germ line using the approach of "Rong and Golicâ€. Transgenic Research, 2012, 21, 1125-1136.	1.3	1
8	Comparative Functional Genomics of the Fission Yeasts. Science, 2011, 332, 930-936.	6.0	458
9	Serine recombinases as tools for genome engineering. Methods, 2011, 53, 372-379.	1.9	86
10	A Geographically Diverse Collection of <i>Schizosaccharomyces pombe </i> Isolates Shows Limited Phenotypic Variation but Extensive Karyotypic Diversity. G3: Genes, Genomes, Genetics, 2011, 1, 615-626.	0.8	75
11	Reorganization of the Growth Pattern of Schizosaccharomyces pombe in Invasive Filament Formation. Eukaryotic Cell, 2010, 9, 1788-1797.	3.4	12
12	Site-specific recombination by φC31 integrase and other large serine recombinases. Biochemical Society Transactions, 2010, 38, 388-394.	1.6	110
13	The â€~kinetochore maintenance loop'—The mark of regulation?. BioEssays, 2009, 31, 228-236.	1.2	7
14	Site-specific recombination in Schizosaccharomyces pombe and systematic assembly of a 400kb transgene array in mammalian cells using the integrase of Streptomyces phage i-BT1. Nucleic Acids Research, 2008, 36, e9-e9.	6.5	25
15	Chromosome engineering in DT40 cells and mammalian centromere function. Sub-Cellular Biochemistry, 2006, 40, 39-48.	1.0	O
16	Iterative in vivo assembly of large and complex transgenes by combining the activities of ÂC31 integrase and Cre recombinase. Nucleic Acids Research, 2005, 33, e189-e189.	6.5	45
17	Comparison of Dam tagging and chromatin immunoprecipitation as tools for the identification of the binding sites for S. pombe CENP-C. Chromosome Research, 2005, 13, 73-83.	1.0	11
18	Transcriptome analysis for the chicken based on 19,626 finished cDNA sequences and 485,337 expressed sequence tags. Genome Research, 2005, 15, 174-183.	2.4	79

#	Article	IF	Citations
19	Rearranging the centromere of the human Y chromosome with ÂC31 integrase. Nucleic Acids Research, 2005, 33, 6101-6113.	6.5	27
20	CENP-A Is Required for Accurate Chromosome Segregation and Sustained Kinetochore Association of BubR1. Molecular and Cellular Biology, 2005, 25, 3967-3981.	1.1	168
21	An unpaired mouse centromere passes consistently through male meiosis and does not significantly compromise spermatogenesis. Chromosoma, 2003, 112, 183-189.	1.0	11
22	The chicken as a model for large-scale analysis of vertebrate gene function. Nature Reviews Genetics, 2003, 4, 87-98.	7.7	154
23	Characterization of chicken CENP-A and comparative sequence analysis of vertebrate centromere-specific histone H3-like proteins. Gene, 2003, 316, 39-46.	1.0	23
24	Cloning of human centromeres by transformation-associated recombination in yeast and generation of functional human artificial chromosomes. Nucleic Acids Research, 2003, 31, 922-934.	6.5	69
25	A Comprehensive Collection of Chicken cDNAs. Current Biology, 2002, 12, 1965-1969.	1.8	305
26	The accuracy of segregation of human mini-chromosomes varies in different vertebrate cell lines, correlates with the extent of centromere formation and provides evidence for a trans-acting centromere maintenance activity. Chromosoma, 2001, 109, 524-535.	1.0	29
27	CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO Journal, 2001, 20, 4603-4617.	3.5	150
28	A structurally defined mini-chromosome vector for the mouse germ line. Current Biology, 2000, 10, 31-34.	1.8	69
29	Artificial chromosomes: ideal vectors?. Trends in Biotechnology, 2000, 18, 218-223.	4.9	38
30	The chicken HPRT gene: a counter selectable marker for the DT40 cell line. Nucleic Acids Research, 1999, 27, 1966-1969.	6.5	38
31	CENP-C is necessary but not sufficient to induce formation of a functional centromere. EMBO Journal, 1999, 18, 4196-4209.	3.5	102
32	Human mini-chromosomes in mouse embryonal stem cells. Human Molecular Genetics, 1997, 6, 1375-1382.	1.4	60
33	Mammalian artificial chromosomes. Current Opinion in Genetics and Development, 1996, 6, 281-288.	1.5	19
34	Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 7125-7130.	3.3	139
35	A complete set of human telomeric probes and their clinical application. Nature Genetics, 1996, 14, 86-89.	9.4	310
36	Centromere activation. Trends in Genetics, 1995, 11, 337-339.	2.9	44

#	Article	IF	Citations
37	The sequence organization of the long arm pseudoautosomal region of the human sex chromosomes. Human Molecular Genetics, 1994, 3, 771-778.	1.4	73
38	Dissecting the centromere of the human Y chromosome with cloned telomeric DNA. Human Molecular Genetics, 1994, 3, 1227-1237.	1.4	99
39	Telomere directed fragmentation of mammalian chromosomes. Nucleic Acids Research, 1993, 21, 27-36.	6.5	146
40	Mammalian artificial chromosomes. Current Opinion in Genetics and Development, 1992, 2, 479-486.	1.5	36
41	Targeted breakage of a human chromosome mediated by cloned human telomeric DNA. Nature Genetics, 1992, 2, 283-287.	9.4	81
42	Telomerase and chromosome healing. Current Biology, 1992, 2, 127-129.	1.8	8
43	Stable length polymorphism of up to 260 kb at the tip of the short arm of human chromosome 16. Cell, 1991, 64, 595-606.	13.5	169
44	Structure and polymorphism of human telomere-associated DNA. Cell, 1990, 63, 119-132.	13.5	350
45	Molecular cloning of human telomeres in yeast. Nature, 1989, 338, 774-776.	13.7	153
46	A model for the separation of large DNA molecules by crossed field gel electrophoresis. Nucleic Acids Research, 1987, 15, 5925-5943.	6.5	313
47	Structure of the major block of alphoid satellite DNA on the human Y chromosome. Journal of Molecular Biology, 1987, 195, 457-470.	2.0	160
48	Long-range restriction site mapping of mammalian genomic DNA. Nature, 1986, 322, 477-481.	13.7	203
49	Hypervariable telomeric sequences from the human sex chromosomes are pseudoautosomal. Nature, 1985, 317, 687-692.	13.7	306