
## Graeme Day

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1627094/publications.pdf Version: 2024-02-01



CDAEME DAV

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Cocrystal Strategy to Tune the Luminescent Properties of Stilbeneâ€Type Organic Solidâ€&tate Materials.<br>Angewandte Chemie - International Edition, 2011, 50, 12483-12486.                                           | 7.2  | 463       |
| 2  | Modular and predictable assembly of porous organic molecular crystals. Nature, 2011, 474, 367-371.                                                                                                                       | 13.7 | 452       |
| 3  | Improving Mechanical Properties of Crystalline Solids by Cocrystal Formation: New Compressible<br>Forms of Paracetamol. Advanced Materials, 2009, 21, 3905-3909.                                                         | 11.1 | 451       |
| 4  | Report on the sixth blind test of organic crystal structure prediction methods. Acta<br>Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 439-459.                           | 0.5  | 445       |
| 5  | A third blind test of crystal structure prediction. Acta Crystallographica Section B: Structural Science, 2005, 61, 511-527.                                                                                             | 1.8  | 373       |
| 6  | Significant progress in predicting the crystal structures of small organic molecules – a report on the fourth blind test. Acta Crystallographica Section B: Structural Science, 2009, 65, 107-125.                       | 1.8  | 371       |
| 7  | Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test. Acta Crystallographica Section B: Structural Science, 2011, 67, 535-551.                                           | 1.8  | 358       |
| 8  | Functional materials discovery using energy–structure–function maps. Nature, 2017, 543, 657-664.                                                                                                                         | 13.7 | 348       |
| 9  | Static and lattice vibrational energy differences between polymorphs. CrystEngComm, 2015, 17, 5154-5165.                                                                                                                 | 1.3  | 323       |
| 10 | The Prediction, Morphology, and Mechanical Properties of the Polymorphs of Paracetamol. Journal of the American Chemical Society, 2001, 123, 5086-5094.                                                                  | 6.6  | 283       |
| 11 | Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. Physical Chemistry Chemical Physics, 2010, 12, 8478.                                          | 1.3  | 268       |
| 12 | Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation. Nature Materials, 2007, 6, 206-209.                                                                           | 13.3 | 266       |
| 13 | Powder Crystallography by Combined Crystal Structure Prediction and High-Resolution<br><sup>1</sup> H Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2010, 132,<br>2564-2566.                   | 6.6  | 201       |
| 14 | Current approaches to predicting molecular organic crystal structures. Crystallography Reviews, 2011, 17, 3-52.                                                                                                          | 0.4  | 196       |
| 15 | Near-Ideal Xylene Selectivity in Adaptive Molecular Pillar[ <i>n</i> ]arene Crystals. Journal of the American Chemical Society, 2018, 140, 6921-6930.                                                                    | 6.6  | 191       |
| 16 | On–Off Porosity Switching in a Molecular Organic Solid. Angewandte Chemie - International Edition, 2011, 50, 749-753.                                                                                                    | 7.2  | 176       |
| 17 | <i>De Novo</i> Determination of the Crystal Structure of a Large Drug Molecule by Crystal Structure<br>Prediction-Based Powder NMR Crystallography. Journal of the American Chemical Society, 2013, 135,<br>17501-17507. | 6.6  | 173       |
| 18 | Solid-state dynamic combinatorial chemistry: reversibility and thermodynamic product selection in covalent mechanosynthesis. Chemical Science, 2011, 2, 696.                                                             | 3.7  | 165       |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Understanding the Influence of Polymorphism on Phonon Spectra:Â Lattice Dynamics Calculations and<br>Terahertz Spectroscopy of Carbamazepine. Journal of Physical Chemistry B, 2006, 110, 447-456.                   | 1.2 | 157       |
| 20 | Powder crystallography of pharmaceutical materials by combined crystal structure prediction and solid-state 1H NMR spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 8069.                                | 1.3 | 155       |
| 21 | Machine learning for the structure–energy–property landscapes of molecular crystals. Chemical<br>Science, 2018, 9, 1289-1300.                                                                                        | 3.7 | 153       |
| 22 | Which conformations make stable crystal structures? Mapping crystalline molecular geometries to the conformational energy landscape. Chemical Science, 2014, 5, 3173-3182.                                           | 3.7 | 148       |
| 23 | Evaluating the Energetic Driving Force for Cocrystal Formation. Crystal Growth and Design, 2018, 18, 892-904.                                                                                                        | 1.4 | 145       |
| 24 | Interaction of Charge Carriers with Lattice Vibrations in Oligoacene Crystals from Naphthalene to Pentacene. Journal of the American Chemical Society, 2010, 132, 14437-14446.                                       | 6.6 | 128       |
| 25 | Controlling the Crystallization of Porous Organic Cages: Molecular Analogs of Isoreticular<br>Frameworks Using Shape-Specific Directing Solvents. Journal of the American Chemical Society, 2014,<br>136, 1438-1448. | 6.6 | 122       |
| 26 | Reticular synthesis of porous molecular 1D nanotubes and 3D networks. Nature Chemistry, 2017, 9,<br>17-25.                                                                                                           | 6.6 | 122       |
| 27 | The delicate balance between gelation and crystallisation: structural and computational investigations. Soft Matter, 2010, 6, 4144.                                                                                  | 1.2 | 121       |
| 28 | Beyond the Isotropic Atom Model in Crystal Structure Prediction of Rigid Molecules:  Atomic<br>Multipoles versus Point Charges. Crystal Growth and Design, 2005, 5, 1023-1033.                                       | 1.4 | 119       |
| 29 | The curious case of (caffeine)·(benzoic acid): how heteronuclear seeding allowed the formation of an elusive cocrystal. Chemical Science, 2013, 4, 4417.                                                             | 3.7 | 115       |
| 30 | Elastic Constant Calculations for Molecular Organic Crystals. Crystal Growth and Design, 2001, 1, 13-27.                                                                                                             | 1.4 | 110       |
| 31 | Successful prediction of a model pharmaceutical in the fifth blind test of crystal structure prediction. International Journal of Pharmaceutics, 2011, 418, 168-178.                                                 | 2.6 | 110       |
| 32 | Structure Calculation of an Elastic Hydrogel from Sonication of Rigid Small Molecule Components.<br>Angewandte Chemie - International Edition, 2008, 47, 1058-1062.                                                  | 7.2 | 107       |
| 33 | Predicting Intrinsic Aqueous Solubility by a Thermodynamic Cycle. Molecular Pharmaceutics, 2008, 5, 266-279.                                                                                                         | 2.3 | 104       |
| 34 | A strategy for predicting the crystal structures of flexible molecules: the polymorphism of phenobarbital. Physical Chemistry Chemical Physics, 2007, 9, 1693.                                                       | 1.3 | 103       |
| 35 | Interaction of Charge Carriers with Lattice Vibrations in Organic Molecular Semiconductors:<br>Naphthalene as a Case Study. Journal of Physical Chemistry C, 2009, 113, 4679-4686.                                   | 1.5 | 102       |
| 36 | Testing the Sensitivity of Terahertz Spectroscopy to Changes in Molecular and Supramolecular<br>Structure: A Study of Structurally Similar Cocrystals. Crystal Growth and Design, 2009, 9, 1452-1460.                | 1.4 | 99        |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Nonempirical Anisotropic Atomâ^'Atom Model Potential for Chlorobenzene Crystals. Journal of the<br>American Chemical Society, 2003, 125, 16434-16443.                                                     | 6.6 | 98        |
| 38 | An Assessment of Lattice Energy Minimization for the Prediction of Molecular Organic Crystal Structures. Crystal Growth and Design, 2004, 4, 1327-1340.                                                     | 1.4 | 94        |
| 39 | Benchmark fragment-based <sup>1</sup> H, <sup>13</sup> C, <sup>15</sup> N and <sup>17</sup> O chemical shift predictions in molecular crystals. Physical Chemistry Chemical Physics, 2016, 18, 21686-21709. | 1.3 | 94        |
| 40 | Pharmaceutical polymorph control in a drug-mimetic supramolecular gel. Chemical Science, 2017, 8, 78-84.                                                                                                    | 3.7 | 94        |
| 41 | Towards Prediction of Stoichiometry in Crystalline Multicomponent Complexes. Chemistry - A<br>European Journal, 2008, 14, 8830-8836.                                                                        | 1.7 | 92        |
| 42 | Prediction and Observation of Isostructurality Induced by Solvent Incorporation in Multicomponent<br>Crystals. Journal of the American Chemical Society, 2006, 128, 14466-14467.                            | 6.6 | 91        |
| 43 | Atomistic Calculations of Phonon Frequencies and Thermodynamic Quantities for Crystals of Rigid<br>Organic Molecules. Journal of Physical Chemistry B, 2003, 107, 10919-10933.                              | 1.2 | 88        |
| 44 | A study of the known and hypothetical crystal structures of pyridine: why are there four molecules in the asymmetric unit cell?. CrystEngComm, 2002, 4, 348-355.                                            | 1.3 | 86        |
| 45 | Modeling the interplay of inter- and intramolecular hydrogen bonding in conformational polymorphs. Journal of Chemical Physics, 2008, 128, 244708.                                                          | 1.2 | 83        |
| 46 | Molecular Polarization Effects on the Relative Energies of the Real and Putative Crystal Structures of Valine. Journal of Chemical Theory and Computation, 2008, 4, 1795-1805.                              | 2.3 | 82        |
| 47 | Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.<br>Physical Chemistry Chemical Physics, 2016, 18, 15828-15837.                                           | 1.3 | 81        |
| 48 | Modelling temperature-dependent properties of polymorphic organic molecular crystals. Physical<br>Chemistry Chemical Physics, 2016, 18, 31132-31143.                                                        | 1.3 | 81        |
| 49 | Predicted energy–structure–function maps for the evaluation of small molecule organic semiconductors. Journal of Materials Chemistry C, 2017, 5, 7574-7584.                                                 | 2.7 | 81        |
| 50 | Cocrystallization by Freeze-Drying: Preparation of Novel Multicomponent Crystal Forms. Crystal<br>Growth and Design, 2013, 13, 4599-4606.                                                                   | 1.4 | 80        |
| 51 | Large-Scale Computational Screening of Molecular Organic Semiconductors Using Crystal Structure<br>Prediction. Chemistry of Materials, 2018, 30, 4361-4371.                                                 | 3.2 | 79        |
| 52 | Investigating the latent polymorphism of maleic acid. Chemical Communications, 2006, , 54-56.                                                                                                               | 2.2 | 78        |
| 53 | A study into the effect of subtle structural details and disorder on the terahertz spectrum of crystalline benzoic acid. Physical Chemistry Chemical Physics, 2010, 12, 5329.                               | 1.3 | 78        |
| 54 | Predicting stoichiometry and structure of solvates. Chemical Communications, 2010, 46, 2224.                                                                                                                | 2.2 | 78        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Convergence Properties of Crystal Structure Prediction by Quasi-Random Sampling. Journal of Chemical Theory and Computation, 2016, 12, 910-924.                                                                    | 2.3  | 78        |
| 56 | <i>In silico</i> Design of Supramolecules from Their Precursors: Odd–Even Effects in Cage-Forming Reactions. Journal of the American Chemical Society, 2013, 135, 9307-9310.                                       | 6.6  | 75        |
| 57 | Resorcinol Crystallization from the Melt: A New Ambient Phase and New "Riddles― Journal of the<br>American Chemical Society, 2016, 138, 4881-4889.                                                                 | 6.6  | 74        |
| 58 | Predicted crystal energy landscapes of porous organic cages. Chemical Science, 2014, 5, 2235-2245.                                                                                                                 | 3.7  | 73        |
| 59 | An Expandable Hydrogen-Bonded Organic Framework Characterized by Three-Dimensional Electron<br>Diffraction. Journal of the American Chemical Society, 2020, 142, 12743-12750.                                      | 6.6  | 70        |
| 60 | Application of computational methods to the design and characterisation of porous molecular materials. Chemical Society Reviews, 2017, 46, 3286-3301.                                                              | 18.7 | 68        |
| 61 | Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages. ACS<br>Central Science, 2017, 3, 734-742.                                                                           | 5.3  | 68        |
| 62 | Realizing Predicted Crystal Structures at Extreme Conditions:  The Low-Temperature and High-Pressure<br>Crystal Structures of 2-Chlorophenol and 4-Fluorophenol. Crystal Growth and Design, 2005, 5,<br>1055-1071. | 1.4  | 63        |
| 63 | Solvent inclusion in form II carbamazepine. Chemical Communications, 2007, , 1600.                                                                                                                                 | 2.2  | 62        |
| 64 | Single-crystal investigation of <scp>L</scp> -tryptophan with <i>Z</i> ′ = 16. Acta Crystallographica<br>Section B: Structural Science, 2012, 68, 549-557.                                                         | 1.8  | 62        |
| 65 | Predicting Inclusion Behaviour and Framework Structures in Organic Crystals. Chemistry - A<br>European Journal, 2009, 15, 13033-13040.                                                                             | 1.7  | 61        |
| 66 | Mining predicted crystal structure landscapes with high throughput crystallisation: old molecules,<br>new insights. Chemical Science, 2019, 10, 9988-9997.                                                         | 3.7  | 61        |
| 67 | Amide Pyramidalization in Carbamazepine:  A Flexibility Problem in Crystal Structure Prediction?.<br>Crystal Growth and Design, 2006, 6, 1858-1866.                                                                | 1.4  | 60        |
| 68 | Modification of luminescent properties of a coumarin derivative by formation of multi-component crystals. CrystEngComm, 2012, 14, 5121.                                                                            | 1.3  | 59        |
| 69 | Importance of Molecular Shape for the Overall Stability of Hydrogen Bond Motifs in the Crystal<br>Structures of Various Carbamazepine-Type Drug Molecules. Crystal Growth and Design, 2007, 7,<br>100-107.         | 1.4  | 52        |
| 70 | From Concept to Crystals via Prediction: Multiâ€Component Organic Cage Pots by Social Selfâ€Sorting.<br>Angewandte Chemie - International Edition, 2019, 58, 16275-16281.                                          | 7.2  | 52        |
| 71 | Pseudoracemic amino acid complexes: blind predictions for flexible two-component crystals. Physical<br>Chemistry Chemical Physics, 2010, 12, 8466.                                                                 | 1.3  | 48        |
| 72 | Rapid Structure Determination of Molecular Solids Using Chemical Shifts Directed by Unambiguous<br>Prior Constraints. Journal of the American Chemical Society, 2019, 141, 16624-16634.                            | 6.6  | 47        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Determination of the Crystal Structure of a New Polymorph of Theophylline. Chemistry - A European<br>Journal, 2013, 19, 7883-7888.                                                                                                                                                                                                                                                                                                           | 1.7  | 46        |
| 74 | Space group selection for crystal structure prediction of solvates. CrystEngComm, 2007, 9, 556.                                                                                                                                                                                                                                                                                                                                              | 1.3  | 45        |
| 75 | Pervasive Delocalisation Error Causes Spurious Proton Transfer in Organic Acid–Base Coâ€Crystals.<br>Angewandte Chemie - International Edition, 2018, 57, 14906-14910.                                                                                                                                                                                                                                                                       | 7.2  | 45        |
| 76 | Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework. Journal of Materials Chemistry A, 2020, 8, 7158-7170.                                                                                                                                                                                                                                                                                  | 5.2  | 45        |
| 77 | Energy–Structure–Function Maps: Cartography for Materials Discovery. Advanced Materials, 2018, 30,<br>e1704944.                                                                                                                                                                                                                                                                                                                              | 11.1 | 44        |
| 78 | Multifidelity Statistical Machine Learning for Molecular Crystal Structure Prediction. Journal of<br>Physical Chemistry A, 2020, 124, 8065-8078.                                                                                                                                                                                                                                                                                             | 1.1  | 38        |
| 79 | Structure prediction, disorder and dynamics in a DMSO solvate of carbamazepine. Physical Chemistry Chemical Physics, 2011, 13, 12808.                                                                                                                                                                                                                                                                                                        | 1.3  | 36        |
| 80 | Polymorph Identification and Crystal Structure Determination by a Combined Crystal Structure<br>Prediction and Transmission Electron Microscopy Approach. Chemistry - A European Journal, 2013, 19,<br>7874-7882.                                                                                                                                                                                                                            | 1.7  | 34        |
| 81 | Enhanced NMR Discrimination of Pharmaceutically Relevant Molecular Crystal Forms through<br>Fragment-Based Ab Initio Chemical Shift Predictions. Crystal Growth and Design, 2016, 16, 6479-6493.                                                                                                                                                                                                                                             | 1.4  | 34        |
| 82 | Minimizing Polymorphic Risk through Cooperative Computational and Experimental Exploration.<br>Journal of the American Chemical Society, 2020, 142, 16668-16680.                                                                                                                                                                                                                                                                             | 6.6  | 34        |
| 83 | Computational modelling of solvent effects in a prolific solvatomorphic porous organic cage.<br>Faraday Discussions, 2018, 211, 383-399.                                                                                                                                                                                                                                                                                                     | 1.6  | 33        |
| 84 | Machine-Learned Fragment-Based Energies for Crystal Structure Prediction. Journal of Chemical Theory and Computation, 2019, 15, 2743-2758.                                                                                                                                                                                                                                                                                                   | 2.3  | 33        |
| 85 | Analogy Powered by Prediction and Structural Invariants: Computationally Led Discovery of a<br>Mesoporous Hydrogen-Bonded Organic Cage Crystal. Journal of the American Chemical Society, 2022,<br>144, 9893-9901.                                                                                                                                                                                                                           | 6.6  | 33        |
| 86 | A computational and experimental search for polymorphs of parabanic acid $\hat{a} \in \hat{a}$ a salutary tale leading to the crystal structure of oxo-ureido-acetic acid methyl esterElectronic supplementary information (ESI) available: crystal structures of the 16 lattice energy minima in Table 2, in the space group setting used in the minimisation. See http://www.rsc.org/suppdata/ce/b2/b211784c/. CrystEngComm, 2003, 5, 3-9. | 1.3  | 32        |
| 87 | Dynamics in crystals of rigid organic molecules: contrasting the phonon frequencies calculated by molecular dynamics with harmonic lattice dynamics for imidazole and 5-azauracil. Molecular Physics, 2004, 102, 1067-1083.                                                                                                                                                                                                                  | 0.8  | 32        |
| 88 | Crystal packing predictions of the alpha-amino acids: methods assessment and structural observations. CrystEngComm, 2010, 12, 2443.                                                                                                                                                                                                                                                                                                          | 1.3  | 32        |
| 89 | Digital navigation of energy–structure–function maps for hydrogen-bonded porous molecular<br>crystals. Nature Communications, 2021, 12, 817.                                                                                                                                                                                                                                                                                                 | 5.8  | 31        |
| 90 | Database guided conformation selection in crystal structure prediction of alanine. CrystEngComm, 2007, 9, 595.                                                                                                                                                                                                                                                                                                                               | 1.3  | 30        |

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Substituent interference on supramolecular assembly in urea gelators: synthesis, structure prediction and NMR. Soft Matter, 2016, 12, 4034-4043.                                                                                                | 1.2 | 29        |
| 92  | Isostructural organic binary-host frameworks with tuneable and diversely decorated inclusion cavities. CrystEngComm, 2012, 14, 7898.                                                                                                            | 1.3 | 26        |
| 93  | Structure prediction of crystals, surfaces and nanoparticles. Philosophical Transactions Series A,<br>Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190600.                                                                    | 1.6 | 26        |
| 94  | Evolutionary chemical space exploration for functional materials: computational organic semiconductor discovery. Chemical Science, 2020, 11, 4922-4933.                                                                                         | 3.7 | 25        |
| 95  | Structural diversity in imidazolidinone organocatalysts: a synchrotron and computational study.<br>Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64, o10-o14.                                                       | 0.4 | 24        |
| 96  | Rationalization of the Color Properties of Fluorescein in the Solid State: A Combined Computational and Experimental Study. Chemistry - A European Journal, 2016, 22, 10065-10073.                                                              | 1.7 | 24        |
| 97  | An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using<br>atomic multipole electrostatics. Acta Crystallographica Section B: Structural Science, Crystal<br>Engineering and Materials, 2016, 72, 477-487. | 0.5 | 24        |
| 98  | Exploring the Multi-minima Behavior of Small Molecule Crystal Polymorphs at Finite Temperature.<br>Crystal Growth and Design, 2019, 19, 5568-5580.                                                                                              | 1.4 | 24        |
| 99  | Polymorphism of Scyllo-Inositol:  Joining Crystal Structure Prediction with Experiment to Elucidate<br>the Structures of Two Polymorphs. Crystal Growth and Design, 2006, 6, 2301-2307.                                                         | 1.4 | 23        |
| 100 | From Concept to Crystals via Prediction: Multiâ€Component Organic Cage Pots by Social Selfâ€Sorting.<br>Angewandte Chemie, 2019, 131, 16421-16427.                                                                                              | 1.6 | 23        |
| 101 | Electronic Excitations in Homopolyatomic Bismuth Cations: Spectroscopic Measurements in Molten<br>Salts and an ab initio CI-Singles Study. Chemistry - A European Journal, 2000, 6, 1078-1086.                                                  | 1.7 | 22        |
| 102 | An Experiment in Crystal Structure Prediction by Popular Vote. Crystal Growth and Design, 2006, 6,<br>1985-1990.                                                                                                                                | 1.4 | 22        |
| 103 | The Plot Thickens: Gelation by Phenylalanine in Water and Dimethyl Sulfoxide. Crystal Growth and Design, 2017, 17, 4100-4109.                                                                                                                   | 1.4 | 22        |
| 104 | Solid-State Chemistry and Polymorphism of the Nucleobase Adenine. Crystal Growth and Design, 2016, 16, 3262-3270.                                                                                                                               | 1.4 | 21        |
| 105 | Effect of Fluorination on Molecular Conformation in the Solid State: Tuning the Conformation of Cocrystal Formers. Crystal Growth and Design, 2011, 11, 972-981.                                                                                | 1.4 | 19        |
| 106 | Is the equilibrium composition of mechanochemical reactions predictable using computational chemistry?. Faraday Discussions, 2014, 170, 41-57.                                                                                                  | 1.6 | 19        |
| 107 | Crystal structure determination of an elusive methanol solvate – hydrate of catechin using crystal structure prediction and NMR crystallography. CrystEngComm, 2020, 22, 4969-4981.                                                             | 1.3 | 19        |
| 108 | Highly Unusual Triangular Crystals of Theophylline: The Influence of Solvent on the Growth Rates of<br>Polar Crystal Faces. Crystal Growth and Design, 2015, 15, 2514-2523.                                                                     | 1.4 | 18        |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Clathrate Structure Determination by Combining Crystal Structure Prediction with Computational<br>and Experimental <sup>129</sup> Xe NMR Spectroscopy. Chemistry - A European Journal, 2017, 23,<br>5258-5269.                                      | 1.7 | 18        |
| 110 | Explaining crystallization preferences of two polyphenolic diastereoisomers by crystal structure prediction. CrystEngComm, 2019, 21, 2067-2079.                                                                                                     | 1.3 | 18        |
| 111 | Sensitivity of Morphology Prediction to the Force Field:  Paracetamol as an Example. Crystal Growth and Design, 2004, 4, 1341-1349.                                                                                                                 | 1.4 | 17        |
| 112 | Exploration and Optimization in Crystal Structure Prediction: Combining Basin Hopping with Quasi-Random Sampling. Journal of Chemical Theory and Computation, 2021, 17, 1988-1999.                                                                  | 2.3 | 17        |
| 113 | Synthesis, structure, electrostatic properties and spectroscopy of<br>3-methyl-4,5,6,7-tetrafluoro-1H-indazole. An experimental and ab initio computational study â€. Journal<br>of the Chemical Society Perkin Transactions II, 1998, , 2713-2720. | 0.9 | 16        |
| 114 | Understanding the formation of apremilast cocrystals. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 803-814.                                                                                   | 0.5 | 15        |
| 115 | The monolayer structure of 1,2-bis(4-pyridyl)ethylene physisorbed on a graphite surface. Molecular<br>Physics, 2013, 111, 73-79.                                                                                                                    | 0.8 | 14        |
| 116 | <i>De Novo</i> Crystal Structure Determination from Machine Learned Chemical Shifts. Journal of the American Chemical Society, 2022, 144, 7215-7223.                                                                                                | 6.6 | 14        |
| 117 | Co-crystallisation of cytosine with 1,10-phenanthroline: computational screening and experimental realisation. CrystEngComm, 2015, 17, 7130-7141.                                                                                                   | 1.3 | 13        |
| 118 | Accelerating computational discovery of porous solids through improved navigation of energy-structure-function maps. Science Advances, 2021, 7, .                                                                                                   | 4.7 | 13        |
| 119 | Introduction to the special issue on crystal structure prediction. Acta Crystallographica Section B:<br>Structural Science, Crystal Engineering and Materials, 2016, 72, 435-436.                                                                   | 0.5 | 11        |
| 120 | Pervasive Delocalisation Error Causes Spurious Proton Transfer in Organic Acid–Base Coâ€Crystals.<br>Angewandte Chemie, 2018, 130, 15122-15126.                                                                                                     | 1.6 | 10        |
| 121 | Applications of crystal structure prediction – organic molecular structures: general discussion.<br>Faraday Discussions, 2018, 211, 493-539.                                                                                                        | 1.6 | 8         |
| 122 | Crystal structure evaluation: calculating relative stabilities and other criteria: general discussion.<br>Faraday Discussions, 2018, 211, 325-381.                                                                                                  | 1.6 | 7         |
| 123 | Experimental and predicted crystal structures of Pigment Red 168 and other dihalogenated anthanthrones. Acta Crystallographica Section B: Structural Science, 2010, 66, 515-526.                                                                    | 1.8 | 6         |
| 124 | Applications of crystal structure prediction – inorganic and network structures: general discussion.<br>Faraday Discussions, 2018, 211, 613-642.                                                                                                    | 1.6 | 6         |
| 125 | Inherent Ethyl Acetate Selectivity in a Trianglimine Molecular Solid. Chemistry - A European Journal, 2021, 27, 10589-10594.                                                                                                                        | 1.7 | 6         |
| 126 | Surprising Chemistry of 6-Azidotetrazolo[5,1- <i>a</i> ]phthalazine: What a Purported Natural Product<br>Reveals about the Polymorphism of Explosives. Journal of Organic Chemistry, 2022, 87, 6680-6694.                                           | 1.7 | 5         |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Dynamic behaviour in the solid state. CrystEngComm, 2011, 13, 4303.                                                                                                                                                   | 1.3 | 3         |
| 128 | Computational Methods for the Assignment of Vibrational Modes in Crystalline Materials. Springer<br>Series in Optical Sciences, 2012, , 151-190.                                                                      | 0.5 | 3         |
| 129 | Structure searching methods: general discussion. Faraday Discussions, 2018, 211, 133-180.                                                                                                                             | 1.6 | 3         |
| 130 | Properties of Crystalline Organic Molecules. , 2001, , 3-50.                                                                                                                                                          |     | 3         |
| 131 | On the effects of basis set truncation and electron correlation in conformers of 2-hydroxy-acetamide. Advances in Quantum Chemistry, 1998, 32, 93-107.                                                                | 0.4 | 2         |
| 132 | Pasteur's tartaramide/malamide quasiracemates: new entries and departures from near inversion symmetry. CrystEngComm, 2018, 20, 4213-4220.                                                                            | 1.3 | 2         |
| 133 | Modelling of crystal structure of cis-1,2,3,6 and 3,4,5,6-tetrahydrophthalic anhydrides using lattice energy calculations. Journal of Molecular Modeling, 2015, 21, 211.                                              | 0.8 | 1         |
| 134 | Correction: Substituent interference on supramolecular assembly in urea gelators: synthesis, structure prediction and NMR. Soft Matter, 2016, 12, 5489-5489.                                                          | 1.2 | 1         |
| 135 | 2016 New talent: crystal engineering at its biggest and strongest. CrystEngComm, 2016, 18, 3963-3967.                                                                                                                 | 1.3 | 1         |
| 136 | Combining forces: complementary techniques brought together to determine tricky crystal<br>structures. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials,<br>2020, 76, 294-295. | 0.5 | 1         |
| 137 | Powder Crystallography by Combining NMR and Crystal Structure Predictions. Acta<br>Crystallographica Section A: Foundations and Advances, 2014, 70, C136-C136.                                                        | 0.0 | 1         |
| 138 | Modelling the effect of hydrogen positions on the lattice dynamics calculations of terahertz spectra of benzoic acid. , 2008, , .                                                                                     |     | 0         |
| 139 | Using terahertz time-domain-spectroscopy to follow the kinetics and mechanism of cocrystal formation. , 2008, , .                                                                                                     |     | 0         |
| 140 | Probing solids through THz spectroscopy: Differentiation of chiral and racemic forms of isostructural and non-isostructural cocrystals. , 2008, , .                                                                   |     | 0         |
| 141 | Cover Picture: On-Off Porosity Switching in a Molecular Organic Solid (Angew. Chem. Int. Ed. 3/2011).<br>Angewandte Chemie - International Edition, 2011, 50, 555-555.                                                | 7.2 | Ο         |
| 142 | Towards the computation-led design of porous molecular crystals. Acta Crystallographica Section A:<br>Foundations and Advances, 2012, 68, s108-s108.                                                                  | 0.3 | 0         |
| 143 | Finally: the crystal structure ofL-tryptophan. Acta Crystallographica Section A: Foundations and Advances, 2012, 68, s114-s114.                                                                                       | 0.3 | 0         |
| 144 | Structure prediction of N-heteroacenes as potential organic semiconductors. Acta Crystallographica<br>Section A: Foundations and Advances, 2014, 70, C1621-C1621.                                                     | 0.0 | 0         |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | The exciting life of a small adenine molecule. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s363-s363.                                                                                     | 0.0 | 0         |
| 146 | Lattice vibrations in molecular crystals: polymorphism and phase transitions. Acta Crystallographica<br>Section A: Foundations and Advances, 2016, 72, s127-s127.                                                   | 0.0 | 0         |
| 147 | Computer-guided porous materials design: from rationalization to prediction. Acta Crystallographica<br>Section A: Foundations and Advances, 2017, 73, a289-a289.                                                    | 0.0 | 0         |
| 148 | Crystal energy landscapes of intrinsically porous molecules. Acta Crystallographica Section A:<br>Foundations and Advances, 2011, 67, C251-C252.                                                                    | 0.3 | 0         |
| 149 | A novel approach to crystal structure determination for organic compounds. Acta Crystallographica<br>Section A: Foundations and Advances, 2012, 68, s109-s109.                                                      | 0.3 | 0         |
| 150 | Mapping crystalline molecular geometries to the conformational energy landscape. Acta<br>Crystallographica Section A: Foundations and Advances, 2013, 69, s154-s154.                                                | 0.3 | 0         |
| 151 | Towards computer-guided tuning of the crystal packing of porous organic cages. Acta<br>Crystallographica Section A: Foundations and Advances, 2014, 70, C667-C667.                                                  | 0.0 | 0         |
| 152 | Insight from energy surfaces: structure prediction by lattice energy exploration. Acta<br>Crystallographica Section A: Foundations and Advances, 2014, 70, C28-C28.                                                 | 0.0 | 0         |
| 153 | Predicting Porous Molecular Crystals and Clathrates. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C1625-C1625.                                                                             | 0.0 | 0         |
| 154 | Ab initio 35Cl solid state NMR-based crystallography of active pharmaceutical ingredients. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s117-s117.                                         | 0.0 | 0         |
| 155 | Combining experimental and computational techniques for polymorph screening. Acta<br>Crystallographica Section A: Foundations and Advances, 2018, 74, a303-a303.                                                    | 0.0 | 0         |
| 156 | Applying fast, accurate lattice energies for molecular crystal structure prediction using<br>CrystalExplorer model energies. Acta Crystallographica Section A: Foundations and Advances, 2018,<br>74, e364-e364.    | 0.0 | 0         |
| 157 | Computation-led discovery of functional molecular materials. Acta Crystallographica Section A:<br>Foundations and Advances, 2018, 74, e119-e119.                                                                    | 0.0 | 0         |
| 158 | Combining experimental and computational techniques to understand phase transitions of nucleobase adenine. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e158-e158.                         | 0.0 | 0         |
| 159 | Determination of elusive crystal structure of solvate-hydrate of catechin by crystal structure prediction and NMR crystallography. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e611-e611. | 0.0 | 0         |