Paula Alvito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1627025/publications.pdf

Version: 2024-02-01

28 papers

6,594 citations

471061 17 h-index 26 g-index

28 all docs

28 docs citations

28 times ranked

6307 citing authors

#	Article	IF	CITATIONS
1	A standardised static <i>in vitro</i> digestion method suitable for food – an international consensus. Food and Function, 2014, 5, 1113-1124.	2.1	3,730
2	INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 2019, 14, 991-1014.	5.5	1,873
3	The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Research International, 2016, 88, 217-225.	2.9	180
4	Extending inÂvitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information. Trends in Food Science and Technology, 2017, 60, 52-63.	7.8	134
5	Human biomonitoring in health risk assessment in Europe: Current practices and recommendations for the future. International Journal of Hygiene and Environmental Health, 2019, 222, 727-737.	2.1	124
6	The occurrence of mycotoxins in breast milk, fruit products and cereal-based infant formula: A review. Trends in Food Science and Technology, 2019, 92, 81-93.	7.8	70
7	Assessment of multiple mycotoxins in breakfast cereals available in the Portuguese market. Food Chemistry, 2018, 239, 132-140.	4.2	66
8	Assessment of mycotoxin exposure and risk characterization using occurrence data in foods and urinary biomarkers in Brazil. Food and Chemical Toxicology, 2019, 128, 21-34.	1.8	51
9	Portuguese children dietary exposure to multiple mycotoxins – An overview of risk assessment under MYCOMIX project. Food and Chemical Toxicology, 2018, 118, 399-408.	1.8	47
10	Single-compound and cumulative risk assessment of mycotoxins present in breakfast cereals consumed by children from Lisbon region, Portugal. Food and Chemical Toxicology, 2015, 86, 274-281.	1.8	46
11	Patulin and ochratoxin A co-occurrence and their bioaccessibility in processed cereal-based foods: A contribution for Portuguese children risk assessment. Food and Chemical Toxicology, 2016, 96, 205-214.	1.8	42
12	Exposure Assessment to Mycotoxins in a Portuguese Fresh Bread Dough Company by Using a Multi-Biomarker Approach. Toxins, 2018, 10, 342.	1.5	32
13	Patulin in fruit juices: occurrence, bioaccessibility, and risk assessment for Serbian population. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 985-995.	1.1	27
14	A multi-endpoint approach to the combined toxic effects of patulin and ochratoxin a in human intestinal cells. Toxicology Letters, 2019, 313, 120-129.	0.4	27
15	Total mercury in infant food, occurrence and exposure assessment in Portugal. Food Additives and Contaminants: Part B Surveillance, 2013, 6, 151-157.	1.3	25
16	Analysis of the Characteristics and Cytotoxicity of Titanium Dioxide Nanomaterials Following Simulated In Vitro Digestion. Nanomaterials, 2020, 10, 1516.	1.9	21
17	Occurrence and infant exposure assessment of nitrates in baby foods marketed in the region of Lisbon, Portugal. Food Additives and Contaminants: Part B Surveillance, 2011, 4, 218-225.	1.3	18
18	Applicability of In Vitro Methods to Study Patulin Bioaccessibility and Its Effects on Intestinal Membrane Integrity. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2014, 77, 983-992.	1.1	17

#	Article	IF	CITATIONS
19	Mycotoxin Exposure during the First 1000 Days of Life and Its Impact on Children's Health: A Clinical Overview. Toxins, 2022, 14, 189.	1.5	15
20	Building capacity in risk-benefit assessment of foods: Lessons learned from the RB4EU project. Trends in Food Science and Technology, 2019, 91, 541-548.	7.8	13
21	Deoxynivalenol exposure assessment through a modelling approach of food intake and biomonitoring data $\hat{a} \in A$ contribution to the risk assessment of an enteropathogenic mycotoxin. Food Research International, 2021, 140, 109863.	2.9	12
22	Food Consumption Data as a Tool to Estimate Exposure to Mycoestrogens. Toxins, 2020, 12, 118.	1.5	10
23	The Interaction between Tribolium castaneum and Mycotoxigenic Aspergillus flavus in Maize Flour. Insects, 2021, 12, 730.	1.0	5
24	RiskBenefit4EU – Partnering to strengthen Riskâ€Benefit Assessment within the EU using a holistic approach. EFSA Supporting Publications, 2019, 16, 1768E.	0.3	3
25	Risk-Benefit Assessment of Cereal-Based Foods Consumed by Portuguese Children Aged 6 to 36 Months—A Case Study under the RiskBenefit4EU Project. Nutrients, 2021, 13, 3127.	1.7	3
26	earlyMYCO: A Pilot Mother-Child Cohort Study to Assess Early-Life Exposure to Mycotoxinsâ€"Challenges and Lessons Learned. International Journal of Environmental Research and Public Health, 2022, 19, 7716.	1.2	2
27	Food safety and risk assessment. Food Research International, 2021, 147, 110513.	2.9	1
28	Nanomaterials in Foods and Human Digestion: An Important Layer in the Assessment of Potential Toxic Effects. Advances in Experimental Medicine and Biology, 2022, 1357, 403-414.	0.8	0