Audrey R Odom John

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1626891/publications.pdf

Version: 2024-02-01

172457 118850 4,267 79 29 62 citations g-index h-index papers 150 150 150 5748 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	A Phospholipase C-Dependent Inositol Polyphosphate Kinase Pathway Required for Efficient Messenger RNA Export. Science, 1999, 285, 96-100.	12.6	508
2	Calcineurin is required for virulence of Cryptococcus neoformans. EMBO Journal, 1997, 16, 2576-2589.	7.8	458
3	A Role for Nuclear Inositol 1,4,5-Trisphosphate Kinase in Transcriptional Control. Science, 2000, 287, 2026-2029.	12.6	377
4	Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS–CoV-2. Journal of Clinical Investigation, 2020, 130, 5967-5975.	8.2	319
5	Multisystem Inflammatory Syndrome in Children During the Coronavirus 2019 Pandemic: A Case Series. Journal of the Pediatric Infectious Diseases Society, 2020, 9, 393-398.	1.3	317
6	The immunosuppressant FK506 and its nonimmunosuppressive analog L-685,818 are toxic to Cryptococcus neoformans by inhibition of a common target protein. Antimicrobial Agents and Chemotherapy, 1997, 41, 156-161.	3.2	146
7	A Second Target of the Antimalarial and Antibacterial Agent Fosmidomycin Revealed by Cellular Metabolic Profiling. Biochemistry, 2011, 50, 3570-3577.	2.5	142
8	Molecular and Biochemical Characterization of Two Plant Inositol Polyphosphate 6-/3-/5-Kinases. Journal of Biological Chemistry, 2002, 277, 42711-42718.	3.4	120
9	Evidence of thrombotic microangiopathy in children with SARS-CoV-2 across the spectrum of clinical presentations. Blood Advances, 2020, 4, 6051-6063.	5. 2	105
10	DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Science Translational Medicine, 2021, 13, eabj1008.	12.4	90
11	An expanded view of inositol signaling. Advances in Enzyme Regulation, 2001, 41, 57-71.	2.6	85
12	A sugar phosphatase regulates the methylerythritol phosphate (MEP) pathway in malaria parasites. Nature Communications, 2014, 5, 4467.	12.8	69
13	Characterization of the MFα pheromone of the human fungal pathogen Cryptococcus neoformans. Molecular Microbiology, 2002, 38, 1017-1026.	2.5	66
14	Isoprenoid Metabolism in Apicomplexan Parasites. Current Clinical Microbiology Reports, 2014, 1, 37-50.	3.4	63
15	Global proteomic analysis of prenylated proteins in Plasmodium falciparum using an alkyne-modified isoprenoid analogue. Scientific Reports, 2016, 6, 38615.	3.3	63
16	Isoprenoid Biosynthesis Inhibition Disrupts Rab5 Localization and Food Vacuolar Integrity in Plasmodium falciparum. Eukaryotic Cell, 2013, 12, 215-223.	3.4	62
17	Malaria Parasites Produce Volatile Mosquito Attractants. MBio, 2015, 6, .	4.1	61
18	Functional genetic analysis of the Plasmodium falciparum deoxyxylulose 5-phosphate reductoisomerase gene. Molecular and Biochemical Parasitology, 2010, 170, 108-111.	1.1	60

#	Article	IF	Citations
19	Insights into the intracellular localization, protein associations and artemisinin resistance properties of Plasmodium falciparumÂK13. PLoS Pathogens, 2020, 16, e1008482.	4.7	60
20	The Epidemiology of Severe Acute Respiratory Syndrome Coronavirus 2 in a Pediatric Healthcare Network in the United States. Journal of the Pediatric Infectious Diseases Society, 2020, 9, 523-529.	1.3	59
21	Isoprenoid Biosynthesis in Plasmodium falciparum. Eukaryotic Cell, 2014, 13, 1348-1359.	3.4	53
22	Breathprinting Reveals Malaria-Associated Biomarkers and Mosquito Attractants. Journal of Infectious Diseases, 2018, 217, 1553-1560.	4.0	49
23	Reproducible Breath Metabolite Changes in Children with SARS-CoV-2 Infection. ACS Infectious Diseases, 2021, 7, 2596-2603.	3.8	49
24	Five Questions about Non-Mevalonate Isoprenoid Biosynthesis. PLoS Pathogens, 2011, 7, e1002323.	4.7	46
25	Discrimination of SARS-CoV-2 infected patient samples by detection dogs: A proof of concept study. PLoS ONE, 2021, 16, e0250158.	2.5	44
26	<i>Plasmodium</i> IspD (2-C-Methyl- <scp>d</scp> -erythritol 4-Phosphate Cytidyltransferase), an Essential and Druggable Antimalarial Target. ACS Infectious Diseases, 2015, 1, 157-167.	3.8	42
27	The MEP pathway and the development of inhibitors as potential anti-infective agents. MedChemComm, 2012, 3, 418.	3.4	41
28	Convalescent plasma for pediatric patients with SARSâ€CoVâ€2â€associated acute respiratory distress syndrome. Pediatric Blood and Cancer, 2020, 67, e28693.	1.5	37
29	Resistance to the Antimicrobial Agent Fosmidomycin and an FR900098 Prodrug through Mutations in the Deoxyxylulose Phosphate Reductoisomerase Gene (<i>dxr</i>). Antimicrobial Agents and Chemotherapy, 2015, 59, 5511-5519.	3.2	36
30	Structural Studies and Protein Engineering of Inositol Phosphate Multikinase. Journal of Biological Chemistry, 2012, 287, 35360-35369.	3.4	28
31	Whole-Genome Sequencing to Evaluate the Resistance Landscape Following Antimalarial Treatment Failure With Fosmidomycin-Clindamycin. Journal of Infectious Diseases, 2016, 214, 1085-1091.	4.0	28
32	Structureâ€"Activity Relationships of the MEPicides: N-Acyl and O-Linked Analogs of FR900098 as Inhibitors of Dxr from Mycobacterium tuberculosis and Yersinia pestis. ACS Infectious Diseases, 2016, 2, 923-935.	3.8	27
33	The <i>Plasmodium falciparum</i> Artemisinin Susceptibility-Associated AP-2 Adaptin \hat{l}^4 Subunit is Clathrin Independent and Essential for Schizont Maturation. MBio, 2020, 11, .	4.1	27
34	The Glucose Transporter PfHT1 Is an Antimalarial Target of the HIV Protease Inhibitor Lopinavir. Antimicrobial Agents and Chemotherapy, 2015, 59, 6203-6209.	3.2	26
35	Determinants of Anemia and Hemoglobin Concentration in Haitian School-Aged Children. American Journal of Tropical Medicine and Hygiene, 2015, 93, 1092-1098.	1.4	26
36	MEPicides: potent antimalarial prodrugs targeting isoprenoid biosynthesis. Scientific Reports, 2017, 7, 8400.	3.3	26

#	Article	IF	CITATIONS
37	MEPicides: $\hat{l}\pm,\hat{l}^2$ -Unsaturated Fosmidomycin Analogues as DXR Inhibitors against Malaria. Journal of Medicinal Chemistry, 2018, 61, 8847-8858.	6.4	26
38	The Effect of Acrylamide and Other Sulfhydryl Alkylators on the Ability of Dynein and Kinesin to Translocate Microtubules in Vitro. Toxicology and Applied Pharmacology, 1995, 133, 73-81.	2.8	25
39	Nickel Inhibits Binding of α2-Macroglobulin-Methylamine to the Low-Density Lipoprotein Receptor-Related Protein∫i±2-Macroglobulin Receptor but Not the α2-Macroglobulin Signaling Receptorâ€. Biochemistry, 1997, 36, 12395-12399.	2.5	23
40	Inositol phosphate multikinase dependent transcriptional control. Advances in Biological Regulation, 2017, 64, 9-19.	2.3	23
41	Infectious complications of pediatric cochlear implants are highly influenced by otitis media. International Journal of Pediatric Otorhinolaryngology, 2017, 97, 76-82.	1.0	22
42	Distinguishing Multisystem Inflammatory Syndrome in Children From Kawasaki Disease and Benign Inflammatory Illnesses in the SARS-CoV-2 Pandemic. Pediatric Emergency Care, 2020, 36, 554-558.	0.9	20
43	Identification of druggable small molecule antagonists of the Plasmodium falciparum hexose transporter PfHT and assessment of ligand access to the glucose permeation pathway via FLAG-mediated protein engineering. PLoS ONE, 2019, 14, e0216457.	2.5	19
44	Tackling resistance: emerging antimalarials and new parasite targets in the era of elimination. F1000Research, 2018, 7, 1170.	1.6	18
45	A Novel Fluorescence Resonance Energy Transfer-Based Screen in High-Throughput Format To Identify Inhibitors of Malarial and Human Glucose Transporters. Antimicrobial Agents and Chemotherapy, 2016, 60, 7407-7414.	3.2	16
46	Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites. MBio, $2018, 9, \ldots$	4.1	15
47	Protein Prenylation and Hsp40 in Thermotolerance of Plasmodium falciparum Malaria Parasites. MBio, 2021, 12, e0076021.	4.1	15
48	Successful treatment of fulminant neonatal enteroviral myocarditis in monochorionic diamniotic twins with cardiopulmonary support, intravenous immunoglobulin and pocapavir. BMJ Case Reports, 2018, 2018, bcr-2017-224133.	0.5	15
49	Cap-domain closure enables diverse substrate recognition by the C2-type haloacid dehalogenase-like sugar phosphatase <i>Plasmodium falciparum</i> HAD1. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1824-1834.	2.5	14
50	Malaria in Children. Infectious Disease Clinics of North America, 2018, 32, 189-200.	5.1	14
51	The Plasmodium falciparum ABC transporter ABCI3 confers parasite strain-dependent pleiotropic antimalarial drug resistance. Cell Chemical Biology, 2022, 29, 824-839.e6.	5.2	14
52	Molecular Mechanism of Action of Antimalarial Benzoisothiazolones: Species-Selective Inhibitors of the Plasmodium spp. MEP Pathway enzyme, IspD. Scientific Reports, 2016, 6, 36777.	3.3	13
53	The Triphenylethylenes, a Novel Class of Antifungals. MBio, 2014, 5, e01126-14.	4.1	12
54	Potent, specific MEPicides for treatment of zoonotic staphylococci. PLoS Pathogens, 2020, 16, e1007806.	4.7	12

#	Article	IF	CITATIONS
55	Nonâ€canonical metabolic pathways in the malaria parasite detected by isotopeâ€tracing metabolomics. Molecular Systems Biology, 2021, 17, e10023.	7.2	12
56	Breath Metabolites to Diagnose Infection. Clinical Chemistry, 2021, 68, 43-51.	3.2	12
57	Cutaneous Findings in SARS-CoV-2-Associated Multisystem Inflammatory Disease in Children. Open Forum Infectious Diseases, 2021, 8, ofab074.	0.9	10
58	Natural History of <i>Plasmodium odocoilei</i> Malaria Infection in Farmed White-Tailed Deer. MSphere, 2018, 3, .	2.9	9
59	Antimicrobial Prodrug Activation by the Staphylococcal Glyoxalase GloB. ACS Infectious Diseases, 2020, 6, 3064-3075.	3.8	9
60	Structure-guided microbial targeting of antistaphylococcal prodrugs. ELife, 2021, 10, .	6.0	7
61	Comparison of breath sampling methods: a post hoc analysis from observational cohort studies. Analyst, The, 2019, 144, 2026-2033.	3.5	6
62	Haloacid Dehalogenase Proteins: Novel Mediators of Metabolic Plasticity in <i>Plasmodium falciparum</i> . Microbiology Insights, 2019, 12, 117863611984843.	2.0	6
63	Targeting Host Glycolysis as a Strategy for Antimalarial Development. Frontiers in Cellular and Infection Microbiology, 2021, 11, 730413.	3.9	6
64	Muddled mechanisms: recent progress towards antimalarial target identification. F1000Research, 2016, 5, 2514.	1.6	6
65	Breath Collection from Children for Disease Biomarker Discovery. Journal of Visualized Experiments, 2019, , .	0.3	5
66	The Key Glycolytic Enzyme Phosphofructokinase Is Involved in Resistance to Antiplasmodial Glycosides. MBio, 2020, 11 , .	4.1	5
67	Pediatric tropical medicine: The neglected diseases of children. PLoS Neglected Tropical Diseases, 2019, 13, e0007008.	3.0	4
68	Concordance of Preprocedure Testing With Time-of-Surgery Testing for SARS-CoV-2 in Children. Pediatrics, 2021, 147, .	2.1	3
69	The Malaria Metabolite HMBPP Does Not Trigger Erythrocyte Terpene Release. ACS Infectious Diseases, 2020, 6, 2567-2572.	3.8	3
70	Enzymatic and structural characterization of HAD5, an essential phosphomannomutase of malaria-causing parasites. Journal of Biological Chemistry, 2022, 298, 101550.	3.4	3
71	Sweet Talk: Regulating Glucose Metabolism in Toxoplasma. Cell Host and Microbe, 2015, 18, 142-143.	11.0	2
72	Evolution of SARS-CoV-2 Seroprevalence Among Employees of a United States Academic Children's Hospital During the COVID-19 Pandemic. Infection Control and Hospital Epidemiology, 2021, , 1-24.	1.8	2

#	Article	lF	Citations
73	Concordance of Upper and Lower Respiratory Tract Samples for SARS-CoV-2 in Pediatric Patients: Research Letter. Anesthesiology, 2021, 134, 970-972.	2.5	1
74	100 Best Books for Children. JAMA Pediatrics, 2004, 158, 1189.	3.0	0
75	The Longest Mile: Moving Malaria from Clinical Care to Elimination of Transmission. Clinical Chemistry, 2019, 65, 946-948.	3.2	0
76	Editorial overview: Paths of least resistance: surveillance, discovery, and innovation to address the other (antimicrobial resistance) pandemic. Current Opinion in Microbiology, 2020, 57, iii-v.	5.1	0
77	#23: Investigation of Phosphomannomutase as an Antimalarial Drug Target. Journal of the Pediatric Infectious Diseases Society, 2021, 10, S10-S10.	1.3	O
78	Volatile biomarkers of malaria infection. , 2020, , 349-362.		0
79	Evidence of Microangiopathy in Children with Sars-Cov-2 Regardless of Clinical Presentation. Blood, 2020, 136, 28-29.	1.4	0