Claire T Friel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1626723/publications.pdf Version: 2024-02-01

CLAIDE T FDIEL

#	Article	IF	CITATIONS
1	Identification of key residues that regulate the interaction of kinesins with microtubule ends. Cytoskeleton, 2019, 76, 440-446.	1.0	9
2	Efa6 protects axons and regulates their growth and branching by inhibiting microtubule polymerisation at the cortex. ELife, 2019, 8, .	2.8	25
3	Parts list for a microtubule depolymerising kinesin. Biochemical Society Transactions, 2018, 46, 1665-1672.	1.6	25
4	A Cdk1 phosphomimic mutant of MCAK impairs microtubule end recognition. PeerJ, 2017, 5, e4034.	0.9	5
5	The family-specific α4-helix of the kinesin-13, MCAK, is critical to microtubule end recognition. Open Biology, 2016, 6, 160223.	1.5	15
6	Use of Stopped-Flow Fluorescence and Labeled Nucleotides to Analyze the ATP Turnover Cycle of Kinesins. Journal of Visualized Experiments, 2014, , e52142.	0.2	4
7	Polo-like kinase 1 regulates the stability of the mitotic centromere-associated kinesin in mitosis. Oncotarget, 2014, 5, 3130-3144.	0.8	31
8	Coupling of kinesin ATP turnover to translocation and microtubule regulation: one engine, many machines. Journal of Muscle Research and Cell Motility, 2012, 33, 377-383.	0.9	24
9	Purification of Tubulin from Porcine Brain. Methods in Molecular Biology, 2011, 777, 15-28.	0.4	68
10	The kinesin-13 MCAK has an unconventional ATPase cycle adapted for microtubule depolymerization. EMBO Journal, 2011, 30, 3928-3939.	3.5	68
11	Analysing the ATP Turnover Cycle of Microtubule Motors. Methods in Molecular Biology, 2011, 777, 177-192.	0.4	8
12	Mitotic centromere-associated kinesin (MCAK): a potential cancer drug target. Oncotarget, 2011, 2, 935-947.	0.8	66
13	Functional and Spatial Regulation of Mitotic Centromere- Associated Kinesin by Cyclin-Dependent Kinase 1. Molecular and Cellular Biology, 2010, 30, 2594-2607.	1.1	51
14	Perturbing the folding energy landscape of the bacterial immunity protein Im7 by site-specific N-linked glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22528-22533.	3.3	72
15	Microtubule Dynamics Reconstituted In Vitro and Imaged by Single-Molecule Fluorescence Microscopy. Methods in Cell Biology, 2010, 95, 221-245.	0.5	239
16	The mechanism of folding of Im7 reveals competition between functional and kinetic evolutionary constraints. Nature Structural and Molecular Biology, 2009, 16, 318-324.	3.6	63
17	The Effect of Increasing the Stability of Non-native Interactions on the Folding Landscape of the Bacterial Immunity Protein Im9. Journal of Molecular Biology, 2007, 371, 554-568.	2.0	30
18	Detailed evaluation of the performance of microfluidic T mixers using fluorescence and ultraviolet resonance Raman spectroscopy. Review of Scientific Instruments, 2006, 77, 055105.	0.6	15

CLAIRE T FRIEL

#	Article	IF	CITATIONS
19	Semisynthesis of a Glycosylated Im7 Analogue for Protein Folding Studies. Journal of the American Chemical Society, 2005, 127, 12882-12889.	6.6	67
20	Helix stability and hydrophobicity in the folding mechanism of the bacterial immunity protein Im9. Protein Engineering, Design and Selection, 2005, 18, 41-50.	1.0	14
21	Protein folding: Defining a "standard―set of experimental conditions and a preliminary kinetic data set of two-state proteins. Protein Science, 2005, 14, 602-616.	3.1	207
22	Switching Two-state to Three-state Kinetics in the Helical Protein Im9 via the Optimisation of Stabilising Non-native Interactions by Design. Journal of Molecular Biology, 2004, 342, 261-273.	2.0	62
23	Comparison of the transition state ensembles for folding of Im7 and Im9 determined using all-atom molecular dynamics simulations with Ï• value restraints. Proteins: Structure, Function and Bioinformatics, 2003, 54, 513-525.	1.5	41
24	Structural Analysis of the Rate-limiting Transition States in the Folding of Im7 and Im9: Similarities and Differences in the Folding of Homologous Proteins. Journal of Molecular Biology, 2003, 326, 293-305.	2.0	126
25	Exploring the folding landscape of alpha helical proteins. Biochemical Society Transactions, 2000, 28, A70-A70.	1.6	0