Qingfu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1626425/publications.pdf

Version: 2024-02-01

31	848	16	28
papers	citations	h-index	g-index
31	31	31	945
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Landscape context determines soil fungal diversity in a fragmented habitat. Catena, 2022, 213, 106163.	5.0	40
2	Taxonomic, functional, and phylogenetic beta diversity in the Inner Mongolia grassland. Global Ecology and Conservation, 2021, 28, e01634.	2.1	14
3	Ecosystem restoration through aerial seeding: Interacting plant–soil microbiome effects on soil multifunctionality. Land Degradation and Development, 2021, 32, 5334-5347.	3.9	15
4	Small patches are hotspots for biodiversity conservation in fragmented landscapes. Ecological Indicators, 2021, 130, 108086.	6.3	26
5	AM Fungi Endow Greater Plant Biomass and Soil Nutrients under Interspecific Competition Rather Than Nutrient Releases for Litter. Forests, 2021, 12, 1704.	2.1	3
6	Ecology and sustainability of the Inner Mongolian Grassland: Looking back and moving forward. Landscape Ecology, 2020, 35, 2413-2432.	4.2	44
7	Ecological restoration is the dominant driver of the recent reversal of desertification in the Mu Us Desert (China). Journal of Cleaner Production, 2020, 268, 122241.	9.3	77
8	Biotic stability mechanisms in Inner Mongolian grassland. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200675.	2.6	19
9	Plant functional \hat{l}^2 diversity is an important mediator of effects of aridity on soil multifunctionality. Science of the Total Environment, 2020, 726, 138529.	8.0	42
10	Different Household Livelihood Strategies and Influencing Factors in the Inner Mongolian Grassland. Sustainability, 2020, 12, 839.	3.2	12
11	Patterns and drivers of household carbon footprint of the herdsmen in the typical steppe region of inner Mongolia, China: A case study in Xilinhot City. Journal of Cleaner Production, 2019, 232, 408-416.	9.3	14
12	Optimal herdsmen household management modes in a typical steppe region of Inner Mongolia, China. Journal of Cleaner Production, 2019, 231, 1-9.	9.3	12
13	Adaptation of Dominant Species to Drought in the Inner Mongolia Grassland – Species Level and Functional Type Level Analysis. Frontiers in Plant Science, 2019, 10, 231.	3.6	14
14	Pastoral Population Growth and Land Use Policy Has Significantly Impacted Livestock Structure in Inner Mongolia—A Case Study in the Xilinhot Region. Sustainability, 2019, 11, 7208.	3.2	11
15	How Willing Are Herders to Participate in Carbon Sequestration and Mitigation? An Inner Mongolian Grassland Case. Sustainability, 2018, 10, 2808.	3.2	5
16	Spatiotemporal Patterns of Desertification Dynamics and Desertification Effects on Ecosystem Services in the Mu Us Desert in China. Sustainability, 2018, 10, 589.	3.2	15
17	Intensive land-use drives regional-scale homogenization of plant communities. Science of the Total Environment, 2018, 644, 806-814.	8.0	22
18	Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland. Ecology and Evolution, 2017, 7, 1605-1615.	1.9	56

#	Article	IF	Citations
19	Impact of Land Use Intensity on Ecosystem Services: An Example from the Agro-Pastoral Ecotone of Central Inner Mongolia. Sustainability, 2017, 9, 1030.	3.2	20
20	Status of Nature Reserves in Inner Mongolia, China. Sustainability, 2016, 8, 889.	3.2	9
21	Understanding Grassland Degradation and Restoration from the Perspective of Ecosystem Services: A Case Study of the Xilin River Basin in Inner Mongolia, China. Sustainability, 2016, 8, 594.	3.2	23
22	The applicability of the species pool hypothesis to community diversity in the Inner Mongolia grassland along a mean annual precipitation gradient. Acta Ecologica Sinica, 2016, 36, 442-447.	1.9	5
23	Effects of climate change on primary production in the Inner Mongolia Plateau, China. International Journal of Remote Sensing, 2016, 37, 5551-5564.	2.9	10
24	Functional Redundancy Instead of Species Redundancy Determines Community Stability in a Typical Steppe of Inner Mongolia. PLoS ONE, 2015, 10, e0145605.	2.5	51
25	Historical landscape dynamics of Inner Mongolia: patterns, drivers, and impacts. Landscape Ecology, 2015, 30, 1579-1598.	4.2	165
26	Effects of climate change on phenology and primary productivity in the desert steppe of Inner Mongolia. Journal of Arid Land, 2015, 7, 251-263.	2.3	33
27	Alpha, Beta and Gamma Diversity Differ in Response to Precipitation in the Inner Mongolia Grassland. PLoS ONE, 2014, 9, e93518.	2.5	29
28	Grazing primarily drives the relative abundance change of C4 plants in the typical steppe grasslands across households at a regional scale. Rangeland Journal, 2014, 36, 565.	0.9	16
29	Human induced dryland degradation in Ordos Plateau, China, revealed by multilevel statistical modeling of normalized difference vegetation index and rainfall time-series. Journal of Arid Land, 2014, 6, 219-229.	2.3	22
30	Productivity–species richness relationship changes from unimodal to positive linear with increasing spatial scale in the Inner Mongolia steppe. Ecological Research, 2011, 26, 649-658.	1.5	22
31	Environmental filtering does not necessarily prevent trait divergence: a case study of the Xilin River Basin in Inner Mongolia, China. Journal of Plant Ecology, 0, , rtw050.	2.3	2