
Simon J Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1626376/publications.pdf Version: 2024-02-01

SIMONICIAR

#	Article	IF	CITATIONS
1	Shiga Toxin Activates Complement and Binds Factor H: Evidence for an Active Role of Complement in Hemolytic Uremic Syndrome. Journal of Immunology, 2009, 182, 6394-6400.	0.4	179
2	Structural basis for complement factor H–linked age-related macular degeneration. Journal of Experimental Medicine, 2007, 204, 2277-2283.	4.2	168
3	His-384 Allotypic Variant of Factor H Associated with Age-related Macular Degeneration Has Different Heparin Binding Properties from the Non-disease-associated Form. Journal of Biological Chemistry, 2006, 281, 24713-24720.	1.6	161
4	Impaired Binding of the Age-related Macular Degeneration-associated Complement Factor H 402H Allotype to Bruch's Membrane in Human Retina. Journal of Biological Chemistry, 2010, 285, 30192-30202.	1.6	159
5	Complement factor H in host defense and immune evasion. Cellular and Molecular Life Sciences, 2017, 74, 1605-1624.	2.4	148
6	Tissue-Specific Host Recognition by Complement Factor H Is Mediated by Differential Activities of Its Glycosaminoglycan-Binding Regions. Journal of Immunology, 2013, 190, 2049-2057.	0.4	133
7	The Factor H Variant Associated with Age-related Macular Degeneration (His-384) and the Non-disease-associated Form Bind Differentially to C-reactive Protein, Fibromodulin, DNA, and Necrotic Cells. Journal of Biological Chemistry, 2007, 282, 10894-10900.	1.6	126
8	Age-related macular degeneration and the role of the complement system. Molecular Immunology, 2015, 67, 43-50.	1.0	120
9	Genetic variants in the complement system predisposing to age-related macular degeneration: A review. Molecular Immunology, 2014, 61, 118-125.	1.0	113
10	Age-related macular degeneration: genome-wide association studies to translation. Genetics in Medicine, 2016, 18, 283-289.	1.1	110
11	The eye as a complement dysregulation hotspot. Seminars in Immunopathology, 2018, 40, 65-74.	2.8	106
12	Mapping the Differential Distribution of Glycosaminoglycans in the Adult Human Retina, Choroid, and Sclera. , 2011, 52, 6511.		103
13	Identification of Factor H–like Protein 1 as the Predominant Complement Regulator in Bruch's Membrane: Implications for Age-Related Macular Degeneration. Journal of Immunology, 2014, 193, 4962-4970.	0.4	102
14	The complement system in age-related macular degeneration. Cellular and Molecular Life Sciences, 2021, 78, 4487-4505.	2.4	96
15	Complement factor H and age-related macular degeneration: the role of glycosaminoglycan recognition in disease pathology. Biochemical Society Transactions, 2010, 38, 1342-1348.	1.6	83
16	Mapping the Differential Distribution of Proteoglycan Core Proteins in the Adult Human Retina, Choroid, and Sclera. , 2012, 53, 7528.		80
17	Complementing the Sugar Code: Role of GAGs and Sialic Acid in Complement Regulation. Frontiers in Immunology, 2015, 6, 25.	2.2	74
18	Increased circulating levels of Factor H-Related Protein 4 are strongly associated with age-related macular degeneration. Nature Communications, 2020, 11, 778.	5.8	74

SIMON J CLARK

#	Article	IF	CITATIONS
19	The Role of Complement in Age-Related Macular Degeneration: Heparan Sulphate, a ZIP Code for Complement Factor H?. Journal of Innate Immunity, 2014, 6, 407-416.	1.8	60
20	Age-Dependent Changes in Heparan Sulfate in Human Bruch's Membrane: Implications for Age-Related Macular Degeneration. , 2014, 55, 5370.		60
21	Bruch's Membrane Compartmentalizes Complement Regulation in the Eye with Implications for Therapeutic Design in Age-Related Macular Degeneration. Frontiers in Immunology, 2017, 8, 1778.	2.2	56
22	A method for the non-covalent immobilization of heparin to surfaces. Analytical Biochemistry, 2004, 330, 123-129.	1.1	48
23	Tumor Cell IDO Enhances Immune Suppression and Decreases Survival Independent of Tryptophan Metabolism in Glioblastoma. Clinical Cancer Research, 2021, 27, 6514-6528.	3.2	48
24	Associative and Structural Properties of the Region of Complement Factor H Encompassing the Tyr402His Disease-related Polymorphism and its Interactions with Heparin. Journal of Molecular Biology, 2007, 368, 564-581.	2.0	44
25	Whole-genome methylation profiling of the retinal pigment epithelium of individuals with age-related macular degeneration reveals differential methylation of the SKI, GTF2H4, and TNXB genes. Clinical Epigenetics, 2019, 11, 6.	1.8	40
26	Basement membrane ligands initiate distinct signalling networks to direct cell shape. Matrix Biology, 2020, 90, 61-78.	1.5	38
27	Development of a microtiter plate-based glycosaminoglycan array for the investigation of glycosaminoglycan-protein interactions. Glycobiology, 2009, 19, 1537-1546.	1.3	37
28	Role of Factor H and Related Proteins in Regulating Complement Activation in the Macula, and Relevance to Age-Related Macular Degeneration. Journal of Clinical Medicine, 2015, 4, 18-31.	1.0	34
29	The Proteoglycan Glycomatrix: A Sugar Microenvironment Essential for Complement Regulation. Frontiers in Immunology, 2013, 4, 412.	2.2	33
30	Common haplotypes at the CFH locus and low-frequency variants in CFHR2 and CFHR5 associate with systemic FHR concentrations and age-related macular degeneration. American Journal of Human Genetics, 2021, 108, 1367-1384.	2.6	33
31	Age and Smoking Related Changes in Metal Ion Levels in Human Lens: Implications for Cataract Formation. PLoS ONE, 2016, 11, e0147576.	1.1	32
32	Beyond factor H: The impact of genetic-risk variants for age-related macular degeneration on circulating factor-H-like 1 and factor-H-related protein concentrations. American Journal of Human Genetics, 2021, 108, 1385-1400.	2.6	30
33	C-reactive protein and pentraxin-3 binding of factor H-like protein 1 differs from complement factor H: implications for retinal inflammation. Scientific Reports, 2018, 8, 1643.	1.6	27
34	Loss-of-Function Mutations in the CFH Gene Affecting Alternatively Encoded Factor H-like 1 Protein Cause Dominant Early-Onset Macular Drusen. Ophthalmology, 2019, 126, 1410-1421.	2.5	25
35	CFH Loss in Human RPE Cells Leads to Inflammation and Complement System Dysregulation via the NF-κB Pathway. International Journal of Molecular Sciences, 2021, 22, 8727.	1.8	18
36	Expression, purification, cocrystallization and preliminary crystallographic analysis of sucrose octasulfate/human complement regulator factor H SCRs 6–8. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 480-483.	0.7	14

SIMON J CLARK

#	Article	IF	CITATIONS
37	Induction of Chemokine Secretion and Monocyte Migration by Human Choroidal Melanocytes in Response to Proinflammatory Cytokines. , 2016, 57, 6568.		14
38	Understanding the molecular basis of age-related macular degeneration and how the identification of new mechanisms may aid the development of novel therapies. Expert Review of Ophthalmology, 2011, 6, 123-128.	0.3	11
39	Control of Complement Activation by the Long Pentraxin PTX3: Implications in Age-Related Macular Degeneration. Frontiers in Pharmacology, 2020, 11, 591908.	1.6	11
40	Enrichment of Bruch's Membrane from Human Donor Eyes. Journal of Visualized Experiments, 2015, , .	0.2	9
41	Association of plasma trace element levels with neovascular age-related macular degeneration. Experimental Eye Research, 2020, 201, 108324.	1.2	8
42	Mast cell infiltration of the choroid and protease release are early events in age-related macular degeneration associated with genetic risk at both chromosomes 1q32 and 10q26. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118510119.	3.3	8
43	FHL-1 interacts with human RPE cells through the $\hat{I}\pm5\hat{I}^21$ integrin and confers protection against oxidative stress. Scientific Reports, 2021, 11, 14175.	1.6	6
44	Complement Factor H Loss in RPE Cells Causes Retinal Degeneration in a Human RPE-Porcine Retinal Explant Co-Culture Model. Biomolecules, 2021, 11, 1621.	1.8	5
45	mTOR Inhibition via Rapamycin Treatment Partially Reverts the Deficit in Energy Metabolism Caused by FH Loss in RPE Cells. Antioxidants, 2021, 10, 1944.	2.2	5
46	Theranos's lesson for investors: speak to lab workers. Nature, 2022, 601, 508-508.	13.7	0