Angelos Efstathiou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1625909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reforming of Methane with Carbon Dioxide to Synthesis Gas over Supported Rhodium Catalysts. Journal of Catalysis, 1996, 158, 51-63.	3.1	250
2	Hydrogen Production Technologies: Current State and Future Developments. Conference Papers in Energy, 2013, 2013, 1-9.	0.5	249
3	"Redox―vs "associative formate with –OH group regeneration―WGS reaction mechanism on Pt/CeO2 Effect of platinum particle size. Journal of Catalysis, 2011, 279, 287-300.). ``3.1	226
4	Characterization of Carbonaceous Species Formed during Reforming of CH4with CO2over Ni/CaO–Al2O3Catalysts Studied by Various Transient Techniques. Journal of Catalysis, 1996, 161, 626-640.	3.1	191
5	Kinetic and mechanistic studies of the water–gas shift reaction on Pt/TiO2 catalyst. Journal of Catalysis, 2009, 264, 117-129.	3.1	168
6	An Investigation of the NO/H2/O2 (Lean-deNOx) Reaction on a Highly Active and Selective Pt/La0.5Ce0.5MnO3 Catalyst. Journal of Catalysis, 2001, 197, 350-364.	3.1	155
7	Reforming of Methane with Carbon Dioxide to Synthesis Gas over Supported Rhodium Catalysts. Journal of Catalysis, 1996, 158, 64-75.	3.1	151
8	Low-temperature H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst. Applied Catalysis B: Environmental, 2007, 72, 240-252.	10.8	150
9	The phenol steam reforming reaction over MgO-based supported Rh catalysts. Journal of Catalysis, 2004, 228, 417-432.	3.1	136
10	Reforming of methane with carbon dioxide to synthesis gas over supported Rh catalysts. Catalysis Today, 1994, 21, 579-587.	2.2	135
11	Mechanistic Studies of the Water–Gas Shift Reaction over Pt/Ce _{<i>x</i>} Zr _{1–<i>x</i>} O ₂ Catalysts: The Effect of Pt Particle Size and Zr Dopant. ACS Catalysis, 2012, 2, 2729-2742.	5.5	133
12	Absorption-enhanced reforming of phenol by steam over supported Fe catalysts. Journal of Catalysis, 2006, 241, 132-148.	3.1	129
13	An Investigation of the NO/H2/O2 (Lean De-NOx) Reaction on a Highly Active and Selective Pt/La0.7Sr0.2Ce0.1FeO3 Catalyst at Low Temperatures. Journal of Catalysis, 2002, 209, 456-471.	3.1	123
14	Mechanistic Aspects of the H2-SCR of NO on a Novel Pt/MgOâ^'CeO2 Catalyst. Journal of Physical Chemistry C, 2007, 111, 3010-3020.	1.5	112
15	Industrial H2-SCR of NO on a novel Pt/MgO–CeO2 catalyst. Applied Catalysis B: Environmental, 2007, 75, 147-156.	10.8	109
16	Effect of support composition on the origin and reactivity of carbon formed during dry reforming of methane over 5wt% Ni/Ce1â^'xMxO2â~δ (M=Zr4+, Pr3+) catalysts. Catalysis Today, 2016, 259, 150-164.	2.2	105
17	Mathematical modeling of the oxygen storage capacity phenomenon studied by CO pulse transient experiments over Pd/CeO2 catalyst. Journal of Catalysis, 2003, 219, 259-272.	3.1	95
18	The steam reforming of phenol reaction over supported-Rh catalysts. Applied Catalysis A: General, 2004, 272, 37-52.	2.2	93

#	Article	IF	CITATIONS
19	Mechanistic aspects of the water–gas shift reaction on alumina-supported noble metal catalysts: In situ DRIFTS and SSITKA-mass spectrometry studies. Catalysis Today, 2007, 127, 304-318.	2.2	93
20	Novel Zn–Ti-based mixed metal oxides for low-temperature adsorption of H2S from industrial gas streams. Applied Catalysis B: Environmental, 2005, 57, 125-137.	10.8	92
21	CO adsorption on transition metal clusters: Trends from density functional theory. Surface Science, 2008, 602, 1858-1862.	0.8	91
22	Effects of Reaction Temperature and Support Composition on the Mechanism of Water–Gas Shift Reaction over Supported-Pt Catalysts. Journal of Physical Chemistry C, 2011, 115, 11595-11610.	1.5	90
23	Transient methods in heterogeneous catalysis: Experimental features and application to study mechanistic aspects of the CH4/O2 (OCM), NH3/O2 and NO/He reactions. Applied Catalysis A: General, 1997, 151, 109-166.	2.2	85
24	The effects of Fe on the oxygen storage and release properties of model Pd–Rh/CeO2–Al2O3 three-way catalyst. Journal of Catalysis, 2006, 240, 182-193.	3.1	85
25	Transient Isotopic Kinetic Study of the NO/H2/O2(Lean de-NOx) Reaction on Pt/SiO2and Pt/Laâ^'Ceâ^'Mnâ^'O Catalysts. Journal of Physical Chemistry B, 2004, 108, 2620-2630.	1.2	83
26	Dynamics of oxygen storage and release on commercial aged Pd-Rh three-way catalysts and their characterization by transient experiments. Applied Catalysis B: Environmental, 2004, 54, 237-250.	10.8	82
27	Dry reforming of methane over 5 wt% Ni/Ce1-xPrxO2-δ catalysts: Performance and characterisation of active and inactive carbon by transient isotopic techniques. Applied Catalysis B: Environmental, 2016, 197, 168-183.	10.8	82
28	The Selective Catalytic Reduction of Nitric Oxide with Methane over La2O3–CaO Systems: Synergistic Effects and Surface Reactivity Studies of NO, CH4, O2, and CO2 by Transient Techniques. Journal of Catalysis, 2000, 194, 250-265.	3.1	81
29	The effect of calcination temperature on the oxygen storage and release properties of CeO2 and Ce–Zr–O metal oxides modified by phosphorus incorporation. Applied Catalysis B: Environmental, 2005, 59, 13-25.	10.8	81
30	The influence of reaction temperature on the chemical structure and surface concentration of active NOx in H2-SCR over Pt/MgOCeO2: SSITKA-DRIFTS and transient mass spectrometry studies. Journal of Catalysis, 2008, 257, 324-333.	3.1	81
31	Effects of the CePO on the oxygen storage and release properties of CeO and CeZrO solid solution. Journal of Catalysis, 2004, 226, 443-456.	3.1	79
32	Industrial NOx control via H2-SCR on a novel supported-Pt nanocatalyst. Chemical Engineering Journal, 2011, 170, 424-432.	6.6	79
33	A comparative study of the steam reforming of phenol towards H2 production over natural calcite, dolomite and olivine materials. Applied Catalysis B: Environmental, 2010, 95, 255-269.	10.8	77
34	Promotional effect of Ce doping in Cu4Al1Ox – LDO catalyst for low-T practical NH3-SCR: Steady-state and transient kinetics studies. Applied Catalysis B: Environmental, 2019, 255, 117749.	10.8	75
35	Remarkable N2-selectivity enhancement of practical NH3-SCR over Co0.5Mn1Fe0.25Al0.75Ox-LDO: The role of Co investigated by transient kinetic and DFT mechanistic studies. Applied Catalysis B: Environmental, 2020, 277, 119186.	10.8	73
36	Novel Fe–Mn–Zn–Ti–O mixed-metal oxides for the low-temperature removal of H2S from gas streams in the presence of H2, CO2, and H2O. Journal of Catalysis, 2005, 236, 205-220.	3.1	71

#	Article	IF	CITATIONS
37	The effect of La3+-doping of CeO2 support on the water-gas shift reaction mechanism and kinetics over Pt/Ce1â^'xLaxO2â^'l'. Applied Catalysis B: Environmental, 2013, 136-137, 225-238.	10.8	70
38	Design Aspects of Doped CeO ₂ for Low-Temperature Catalytic CO Oxidation: Transient Kinetics and DFT Approach. ACS Applied Materials & Interfaces, 2021, 13, 22391-22415.	4.0	70
39	Catalytic behavior of La–Sr–Ce–Fe–O mixed oxidic/perovskitic systems for the NO+CO and NO+CH4+O2 (lean-NOx) reactions. Catalysis Today, 2000, 59, 347-363.	2.2	66
40	The water-gas shift reaction on Pt/γ-Al2O3 catalyst: Operando SSITKA-DRIFTS-mass spectroscopy studies. Catalysis Today, 2008, 138, 228-234.	2.2	66
41	Low-temperature water-gas shift on Pt/Ce1â^'xLaxO2â^'δ: Effect of Ce/La ratio. Applied Catalysis B: Environmental, 2013, 140-141, 333-347.	10.8	63
42	Low-temperature conversion of phenol into CO, CO2 and H2 by steam reforming over La-containing supported Rh catalysts. Applied Catalysis B: Environmental, 2012, 117-118, 81-95.	10.8	62
43	Dry reforming of methane over Ni/Ce0.8Ti0.2O2-δ: The effect of Ni particle size on the carbon pathways studied by transient and isotopic techniques. Applied Catalysis B: Environmental, 2021, 296, 120321.	10.8	62
44	Structural and Redox Properties of Ce _{1–<i>x</i>} Zr _{<i>x</i>} O _{2â^îî} and Ce _{0.8} Zr _{0.15} RE _{0.05} O _{2â^îî} (RE: La, Nd, Pr, Y) Solids Studied by High Temperature <i>in Situ</i> Raman Spectroscopy. Journal of Physical Chemistry C, 2017, 121 _ 7931-7943	1.5	61
45	The role of oxygen and hydroxyl support species on the mechanism of H2 production in the steam reforming of phenol over metal oxide-supported-Rh and -Fe catalysts. Catalysis Today, 2006, 112, 89-93.	2.2	60
46	Role of P-containing species in phosphated CeO2 in the deterioration of its oxygen storage and release properties. Journal of Catalysis, 2006, 239, 410-421.	3.1	60
47	Low-temperature purification of gas streams from phenol by steam reforming over novel supported-Rh catalysts. Applied Catalysis B: Environmental, 2010, 96, 276-289.	10.8	60
48	Influence of oxychlorination treatments on the redox and oxygen storage and release properties of thermally aged Pd-Rh/CexZr1â^xO2/Al2O3 model three-way catalysts. Applied Catalysis B: Environmental, 2005, 60, 117-127.	10.8	58
49	The effect of CeO ₂ –ZrO ₂ structural differences on the origin and reactivity of carbon formed during methane dry reforming over NiCo/CeO ₂ –ZrO ₂ catalysts studied by transient techniques. Catalysis Science and Technology, 2017, 7, 5422-5434.	2.1	58
50	Selective catalytic reduction of nitric oxide with ammonia overV2O5/TiO2 catalyst: A steady-state and transient kinetic study. Applied Catalysis B: Environmental, 1995, 6, 35-59.	10.8	55
51	Origin and reactivity of active and inactive carbon formed during DRM over Ni/Ce0.38Zr0.62O2-δ studied by transient isotopic techniques. Catalysis Today, 2018, 299, 201-211.	2.2	54
52	Synergistic effects of crystal phases and mixed valences in La–Sr–Ce–Fe–O mixed oxidic/perovskitic solids on their catalytic activity for the NO+CO reaction. Applied Catalysis B: Environmental, 2000, 28, 13-28.	10.8	53
53	Tailoring MgO-based supported Rh catalysts for purification of gas streams from phenol. Applied Catalysis B: Environmental, 2012, 111-112, 360-375.	10.8	52
54	Carbon sequestration via enhanced weathering of peridotites and basalts in seawater. Applied Geochemistry, 2018, 91, 197-207.	1.4	52

#	Article	IF	CITATIONS
55	Comparative study of La–Sr–Fe–O perovskite-type oxides prepared by ceramic and surfactant methods over the CH4 and H2 lean-deNOx. Applied Catalysis B: Environmental, 2009, 93, 1-11.	10.8	51
56	N 2 O decomposition over ceria-promoted Ir/Al 2 O 3 catalysts: The role of ceria. Applied Catalysis B: Environmental, 2016, 187, 259-268.	10.8	51
57	Spillover of labile OH, H, and O species in the H2 production by steam reforming of phenol over supported-Rh catalysts. Catalysis Today, 2006, 116, 341-347.	2.2	50
58	Regeneration of thermally aged Pt-Rh/CexZr1â^'xO2-Al2O3 model three-way catalysts by oxychlorination treatments. Applied Catalysis B: Environmental, 2006, 64, 189-200.	10.8	50
59	Photoelectrocatalytic degradation of the insecticide imidacloprid using TiO2/Ti electrodes. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 204, 129-136.	2.0	50
60	Transient Kinetic Study of the Oxidation and Hydrogenation of Carbon Species Formed during CH4/He, CO2/He, and CH4/CO2Reactions over Rh/Al2O3Catalyst. Journal of Catalysis, 1996, 161, 31-42.	3.1	49
61	Selective catalytic reduction of NO by hydrogen (H2-SCR) on WO -promoted Ce Zr1-O2 solids. Applied Catalysis B: Environmental, 2014, 156-157, 72-83.	10.8	49
62	Thermal stability of solid and aqueous solutions of humic acid. Thermochimica Acta, 2007, 454, 78-83.	1.2	48
63	Water–Gas Shift Reaction on Pt/Ce _{1–<i>x</i>} Ti _{<i>x</i>} O _{2â^îſ} : The Effect of Ce/Ti Ratio. Journal of Physical Chemistry C, 2013, 117, 25467-25477.	1.5	48
64	The CO/H2 reaction on Rh/Al2O3II. Kinetic study by transient isotopic methods. Journal of Catalysis, 1989, 120, 137-156.	3.1	47
65	The effect of Pt on the carbon pathways in the dry reforming of methane over Ni-Pt/Ce0.8Pr0.2O2-δ catalyst. Catalysis Today, 2020, 355, 788-803.	2.2	43
66	Effects of calcination temperature on the stability of CePO4 detected in vehicle-aged commercial three-way catalysts. Applied Catalysis B: Environmental, 2004, 48, 113-123.	10.8	42
67	Effects of Pd particle size on the rates of oxygen back-spillover and CO oxidation under dynamic oxygen storage and release measurements over Pd/CeO2 catalysts. Topics in Catalysis, 2007, 42-43, 351-355.	1.3	42
68	The phenol steam reforming reaction towards H2 production on natural calcite. Applied Catalysis B: Environmental, 2009, 90, 347-359.	10.8	42
69	Carbon dioxide storage in olivine basalts: Effect of ball milling process. Powder Technology, 2015, 273, 220-229.	2.1	41
70	The effect of Ti4+ dopant in the 5 wt% Ni/Ce1-xTixO2- catalyst on the carbon pathways of dry reforming of methane studied by various transient and isotopic techniques. Applied Catalysis A: General, 2019, 579, 116-129.	2.2	41
71	The Remarkable Effect of Oxygen on the N2Selectivity of Water Catalytic Denitrification by Hydrogen. Environmental Science & Technology, 2007, 41, 950-956.	4.6	40
72	The effect of Fe on the catalytic behavior of model Pd-Rh/CeO2-Al2O3 three-way catalyst. Applied Catalysis B: Environmental, 2007, 76, 375-385.	10.8	39

#	Article	IF	CITATIONS
73	Cu-Ce-La-Ox as efficient CO oxidation catalysts: Effect of Cu content. Applied Surface Science, 2020, 505, 144474.	3.1	39
74	A Transient Kinetic Study of the Co/H2 Reaction on Rh/Al2O3 Using FTIR and Mass Spectroscopy. Journal of Catalysis, 1994, 148, 224-239.	3.1	37
75	Pt/Mg-Ce-O catalyst for NO/H2/O2 lean de-No x reaction. Environmental Chemistry Letters, 2004, 2, 55.	8.3	37
76	Effects of W6+Doping of TiO2on the Reactivity of Supported Rh toward NO:Â Transient FTIR and Mass Spectroscopy Studies. Journal of Physical Chemistry B, 1997, 101, 7968-7977.	1.2	36
77	Deactivation of Pd/Ce0.5Zr0.5O2 model three-way catalyst by P, Ca and Zn deposition. Applied Catalysis B: Environmental, 2012, 111-112, 233-245.	10.8	36
78	The CO/H2 reaction on Rh/Al2O3I. Steady-state and transient kinetics. Journal of Catalysis, 1989, 120, 118-136.	3.1	35
79	Reactivation of severely aged commercial three-way catalysts by washing with weak EDTA and oxalic acid solutions. Applied Catalysis B: Environmental, 2007, 71, 185-198.	10.8	35
80	Regeneration of three-way automobile catalysts using biodegradable metal chelating agent—S, S-ethylenediamine disuccinic acid (S, S-EDDS). Journal of Hazardous Materials, 2011, 186, 999-1006.	6.5	35
81	The effect of La3+, Ti4+ and Zr4+ dopants on the mechanism of WGS on ceria-doped supported Pt catalysts. Catalysis Today, 2014, 228, 183-193.	2.2	35
82	Effects of Solâ^'Gel Synthesis on 5Feâ^'15Mnâ^'40Znâ^'40Tiâ^'O Mixed Oxide Structure and its H ₂ S Removal Efficiency from Industrial Gas Streams. Environmental Science & Technology, 2009, 43, 4367-4372.	4.6	34
83	Catalytic removal of nitrates from waters. Catalysis Today, 2010, 151, 190-194.	2.2	33
84	Selective catalytic reduction of NO by H2/C3H6 over Pt/Ce1-xZrxO2-Î': The synergy effect studied by transient techniques. Applied Catalysis B: Environmental, 2017, 206, 308-318.	10.8	32
85	Enthalpy and entropy of H2 Adsorption on Rh/Al2O3 measured by temperature-programmed desorption. Journal of Catalysis, 1990, 124, 116-126.	3.1	31
86	The Effect of CeO2 Preparation Method on the Carbon Pathways in the Dry Reforming of Methane on Ni/CeO2 Studied by Transient Techniques. Catalysts, 2019, 9, 621.	1.6	31
87	Elucidation of mechanistic and kinetic aspects of water–gas shift reaction on supported Pt and Au catalysts <i>via</i> transient isotopic techniques. Catalysis, 0, , 175-236.	0.6	31
88	Enhancing the rate of ex situ mineral carbonation in dunites via ball milling. Advanced Powder Technology, 2016, 27, 360-371.	2.0	30
89	Molten Salt-Promoted MgO Adsorbents for CO ₂ Capture: Transient Kinetic Studies. Environmental Science & Technology, 2021, 55, 4513-4521.	4.6	30
90	A Two-Step Reaction Mechanism of Oxygen Release from Pd/CeO ₂ : Mathematical Modelling Based on Step Gas Concentration Experiments. Topics in Catalysis, 2004, 30/31, 325-331.	1.3	28

#	Article	IF	CITATIONS
91	Surface reactivity of LaCoO3 and Ru/LaCoO3 towards CO, CO2 and C3H8: Effect of H2 and O2 pretreatments. Applied Catalysis B: Environmental, 2011, 102, 291-301.	10.8	28
92	Dry reforming of CH4 over NiCo/Ce0.75Zr0.25O2-Î′: The effect of Co on the site activity and carbon pathways studied by transient techniques. Catalysis Communications, 2021, 149, 106237.	1.6	28
93	H2-SCR of NOx on low-SSA CeO2-supported Pd: The effect of Pd particle size. Applied Catalysis A: General, 2021, 615, 118062.	2.2	28
94	CO Oxidation over Rh Dispersed on SiO2, Al2O3 and TiO2: Kinetic Study and Oscillatory Behavior. Journal of Catalysis, 1995, 156, 265-272.	3.1	27
95	Ceria-Based Materials for Hydrogen Production Via Hydrocarbon Steam Reforming and Water-Gas Shift Reactions. Recent Patents on Materials Science, 2011, 4, 122-145.	0.5	25
96	Partial oxidation of methane to synthesis gas over Ru/TiO2 catalysts. Studies in Surface Science and Catalysis, 1996, 101, 443-452.	1.5	24
97	Effect of Thermal Aging on the Transient Kinetics of Oxygen Storage and Release of Commercial Ce x Zr1â^'x O2-based Solids. Topics in Catalysis, 2009, 52, 2013-2018.	1.3	24
98	SURFACE SPECIES ON Rh/Al2O3 DURING CO/H2 REACTION STUDIED BY TRANSIENT TECHNIQUES. Chemical Engineering Communications, 1989, 83, 129-146.	1.5	23
99	Preadsorbed Water-Promoted Mechanism of the Waterâ^Gas Shift Reaction. Journal of Physical Chemistry C, 2008, 112, 19030-19039.	1.5	23
100	Low-temperature catalytic decomposition of ethylene into H2 and secondary carbon nanotubes over Ni/CNTs. Applied Catalysis B: Environmental, 2010, 93, 314-324.	10.8	23
101	NOx Control via H2-Selective Catalytic Reduction (H2-SCR) Technology for Stationary and Mobile Applications. Recent Patents on Materials Science, 2012, 5, 87-104.	0.5	23
102	Elucidating the role of La3+/Sm3+ in the carbon paths of dry reforming of methane over Ni/Ce-La(Sm)-Cu-O using transient kinetics and isotopic techniques. Applied Catalysis B: Environmental, 2022, 304, 121015.	10.8	23
103	Encapsulation of molecular hydrogen in zeolites at 1 atm. Journal of Catalysis, 1990, 123, 456-462.	3.1	22
104	A Diffuse Reflectance Infrared Fourier-Transform Spectra and Density Functional Theory Study of CO Adsorption on Rh/γ-Al2O3. Journal of Physical Chemistry C, 2007, 111, 13872-13878.	1.5	22
105	The effect of preparation route of commercial Co/γ-Al2O3 catalyst on important Fischer-Tropsch kinetic parameters studied by SSITKA and CO-DRIFTS transient hydrogenation techniques. Journal of Catalysis, 2019, 379, 60-77.	3.1	21
106	Unravelling the Mechanism of Intermediateâ€Temperature CO ₂ Interaction with Moltenâ€NaNO ₃ â€Saltâ€Promoted MgO. Advanced Materials, 2022, 34, e2106677.	11.1	21
107	Reactivation of an Aged Commercial Three-Way Catalyst by Oxalic and Citric Acid Washing. Environmental Science & Technology, 2006, 40, 2030-2036.	4.6	20
108	Oxy-chlorination as an effective treatment of aged Pd/CeO2-Al2O3 catalysts for Pd redispersion. Applied Catalysis B: Environmental, 2012, 111-112, 349-359.	10.8	20

#	Article	IF	CITATIONS
109	A Novel Analysis of Transient Isothermal 180 Isotopic Exchange on Commercial CexZr1â^'xO2-Based OSC Materials. Topics in Catalysis, 2019, 62, 219-226.	1.3	20
110	CO Chemisorption and Hydrogenation of Surface Carbon Species Formed After CO/He Reaction on Rh/MgO: A Transient Kinetic Study Using FTIR and Mass Spectroscopy. Journal of Catalysis, 1994, 147, 24-37.	3.1	19
111	Hydrogen production by ethylene decomposition over Ni supported on novel carbon nanotubes and nanofibers. Catalysis Today, 2005, 102-103, 78-84.	2.2	19
112	The steam reforming of phenol over natural calcite materials. Catalysis Today, 2009, 143, 17-24.	2.2	19
113	Effect of ball milling on the carbon sequestration efficiency of serpentinized peridotites. Minerals Engineering, 2018, 120, 66-74.	1.8	19
114	Transient Kinetic Study of the Reaction of CH4 and C2H6 with the Lattice Oxygen of Li+-Doped TiO2 Catalyst. Journal of Catalysis, 1993, 141, 612-627.	3.1	18
115	The effects of the use of weak organic acids on the improvement of oxygen storage and release properties of aged commercial three-way catalysts. Applied Catalysis B: Environmental, 2005, 59, 1-11.	10.8	18
116	Low-temperature water–gas shift on Pt/Ce0.5La0.5O2â^'Î′: Effect of support synthesis method. Catalysis Today, 2015, 242, 153-167.	2.2	18
117	Decoupling the Chemical and Mechanical Strain Effect on Steering the CO ₂ Activation over CeO ₂ -Based Oxides: An Experimental and DFT Approach. ACS Applied Materials & Interfaces, 2022, 14, 33094-33119.	4.0	17
118	Kinetics of Methane Oxidative Coupling on Li-Doped TiO2 Catalysts. Journal of Catalysis, 1993, 140, 1-15.	3.1	16
119	Selective Catalytic Reduction of Nitric Oxide by Methane in the Presence of Oxygen over CaO Catalyst. Journal of Catalysis, 1999, 183, 323-335.	3.1	16
120	Low-temperature water-gas shift on Pt/Ce0.8La0.2O2âʾʾÎ′–CNT: The effect of Ce0.8La0.2O2âʾʾÎ′ CNT ratio. Applied Catalysis A: General, 2015, 504, 585-598.	2.2	15
121	On the potential use of quarry waste material for CO2 sequestration. Journal of CO2 Utilization, 2016, 16, 361-370.	3.3	15
122	Valorization of agricultural wastes could improve soil fertility and mitigate soil direct N2O emissions. Journal of Environmental Management, 2019, 250, 109389.	3.8	15
123	Deactivation of Co/l ³ -Al2O3 in CO methanation studied by transient isotopic experiments: The effect of Co particle size. Journal of Catalysis, 2020, 389, 176-194.	3.1	15
124	The mechanism of reduction of NO with H2 in strongly oxidizing conditions (H2-SCR) on a novel Pt/MgO-CeO2 catalyst: Effects of reaction temperature. Kinetics and Catalysis, 2008, 49, 743-747.	0.3	14
125	Ball Milling Effect on the CO2 Uptake of Mafic and Ultramafic Rocks: A Review. Geosciences (Switzerland), 2018, 8, 406.	1.0	14
126	Encapsulation of molecular hydrogen in ion-exchanged a zeolites at 1 atm. Journal of Catalysis, 1992, 135, 135-146.	3.1	13

#	Article	IF	CITATIONS
127	Efficient In-Situ Regeneration Method of the Catalytic Activity of Aged TWC. Topics in Catalysis, 2007, 42-43, 415-419.	1.3	13
128	Improving the carbonation of air lime mortars at ambient conditions via the incorporation of ball-milled quarry waste. Construction and Building Materials, 2021, 301, 124073.	3.2	13
129	Temperature-programmed desorption (TPD), reaction (TPR) and oxidation (TPO) of species formed on Rh/MgO after interaction with H2 and CO. Journal of Molecular Catalysis, 1991, 69, 41-60.	1.2	12
130	Understanding the Synergistic Catalytic Effect between La2O3and CaO for the CH4Lean De-NOxReaction:Â Kinetic and Mechanistic Studies. Journal of Physical Chemistry B, 2005, 109, 13693-13703.	1.2	12
131	INVESTIGATION OF THE OXYGEN STORAGE AND RELEASE KINETICS OF MODEL AND COMMERCIAL THREE-WAY CATALYTIC MATERIALS BY TRANSIENT TECHNIQUES. Catalytic Science Series, 2013, , 139-221.	0.6	12
132	A method to enhance the CO ₂ storage capacity of pyroxenitic rocks. , 2015, 5, 577-591.		12
133	The selective oxidation of methane to C2-hydrocarbons over lithium-doped TiO2 catalysts. Applied Catalysis A: General, 1994, 111, 41-62.	2.2	11
134	Regeneration of Aged Commercial Three-Way Catalytic Converters. Topics in Catalysis, 2009, 52, 2029-2034.	1.3	11
135	The Effects of P-Poisoning of CexZr1â^'xO2 on the Transient Oxygen Storage and Release Kinetics. Topics in Catalysis, 2013, 56, 232-238.	1.3	11
136	The CO/H2 reaction on Rh/MgO studied by transient isotopic methods. Journal of Molecular Catalysis, 1991, 67, 229-249.	1.2	10
137	Suppression of the oxygen storage and release kinetics in Ce0.5Zr0.5O2 induced by P, Ca and Zn chemical poisoning. Applied Catalysis B: Environmental, 2011, , .	10.8	10
138	The CH4/NO/O2 "Lean-deNOx―Reaction on Mesoporous Mn-Based Mixed Oxides. Topics in Catalysis, 2001, 16/17, 231-235.	1.3	9
139	In Situ Raman Spectroscopy as a Tool for Discerning Subtle Structural Differences between Commercial (Ce,Zr)O2-Based OSC Materials of Identical Composition. Catalysts, 2020, 10, 462.	1.6	9
140	Transient diffusion, sorption, and desorption of cyclopropane in NaX zeolite. Journal of Catalysis, 1991, 131, 94-103.	3.1	8
141	Cyclopropane isomerization over Eu3+NaX zeolites. Journal of Catalysis, 1992, 138, 1-11.	3.1	8
142	The Role of Lattice Oxygen during the Oxidative Coupling of Methane over Li+-Doped TiO2 Catalysts. Journal of Catalysis, 1993, 144, 352-357.	3.1	8
143	A Steady-State Tracing Kinetic Analysis of Oxidative Coupling of Methane over Li+-Doped TiO2: Mechanistic Aspects of the Carbon and Oxygen Reaction Pathways to Form CO2. Journal of Catalysis, 1994, 148, 639-647.	3.1	8
144	Controlling the optical properties of nanostructured oxide-based polymer films. Scientific Reports, 2021, 11, 16009.	1.6	8

#	Article	IF	CITATIONS
145	Ceria-Based Materials for Hydrogen Production Via Hydrocarbon Steam Reforming and Water-Gas Shift Reactions. Recent Patents on Materials Science, 2011, 4, 122-145.	0.5	8
146	Kinetics of methane oxidative coupling on zinc-doped titanium oxide. Applied Catalysis A: General, 1992, 92, 1-15.	2.2	7
147	The Effect of CO Partial Pressure on Important Kinetic Parameters of Methanation Reaction on Co-Based FTS Catalyst Studied by SSITKA-MS and Operando DRIFTS-MS Techniques. Catalysts, 2020, 10, 583.	1.6	7
148	A novel analysis of equilibrium adsorption and desorption using transient tracing methods. Applied Catalysis A: General, 1997, 151, 59-96.	2.2	6
149	Ni/CNT/Zeolite-Y composite catalyst for efficient heptane hydrocracking: Steady-state and transient kinetic studies. Applied Catalysis A: General, 2022, 630, 118437.	2.2	6
150	Transient Kinetic Study of the Reaction of C2H4 and C2H6 with the Lattice and Adsorbed Oxygen Species of Li+-Doped TiO2 Catalysts. Journal of Catalysis, 1994, 147, 279-293.	3.1	5
151	Partial oxidation of methane to synthesis gas over supported ruthenium catalysts. Studies in Surface Science and Catalysis, 1997, 107, 435-440.	1.5	5
152	Regeneration of Aged Commercial Three-Way Catalysts Using Cl-Containing Reagents. Topics in Catalysis, 2013, 56, 255-260.	1.3	5
153	Aqueous Miscible Organic LDH Derived Ni-Based Catalysts for Efficient CO2 Methanation. Catalysts, 2020, 10, 1168.	1.6	5
154	Transient diffusion, desorption, and reaction studies of cyclopropane and propylene with NaX and Eu/NaX zeolites. Journal of Catalysis, 1992, 135, 223-235.	3.1	4
155	Nucleation of isolated PO4 units on CeO2 driven by high temperatures and the effect on its oxygen storage and release properties. Topics in Catalysis, 2007, 42-43, 443-447.	1.3	4
156	Reply to the Letter to the Editor concerning the comments of Dr. F. Meunier to the article Appl. Catal. B: Environ. 136–137 (2013) 225–238, Kalamaras et al., titled "The effect of La3+-doping of CeO2 support the water–gas shift reaction mechanism and kinetics over Pt/Ce1â°'xLaxO2â°Î'― Applied Catalysis B: Environmental, 2014, 152-153, 439-443.	98.8	4
157	CO-Induced Changes in the Oxidation State of Rhodium Supported on MgO: X-Ray Photoelectron Spectroscopic Study. Journal of Catalysis, 1993, 140, 564-574.	3.1	3
158	NOx Control via H2-Selective Catalytic Reduction (H2-SCR) Technology for Stationary and Mobile Applications. Recent Patents on Materials Science, 2012, 5, 87-104.	0.5	3
159	Transient sorption and desorption studies of cyclopropane and propylene with Cs/NaX and Ni/NaX zeolites. Journal of Catalysis, 1992, 135, 236-245.	3.1	2
160	Novel Catalytic Systems for Hydrogen Production via the Water-Gas Shift Reaction. Conference Papers in Energy, 2013, 2013, 1-8.	0.5	2
161	The C2H4/He reaction on Rh/MgO studied by transient methods. Journal of Molecular Catalysis, 1991, 69, 105-116.	1.2	1