List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1625438/publications.pdf Version: 2024-02-01

CUIDING HU

#	Article	IF	CITATIONS
1	An applied deep learning approach for estimating soybean relative maturity from UAV imagery to aid plant breeding decisions. Machine Learning With Applications, 2022, 7, 100233.	4.4	9
2	Resilient Transportation Network Design under Uncertain Link Capacity Using a Trilevel Optimization Model. Journal of Advanced Transportation, 2022, 2022, 1-16.	1.7	2
3	Limited Variation between SARS-CoV-2-Infected Individuals in Domain Specificity and Relative Potency of the Antibody Response against the Spike Glycoprotein. Microbiology Spectrum, 2022, 10, e0267621.	3.0	1
4	Optimizing ensemble weights and hyperparameters of machine learning models for regression problems. Machine Learning With Applications, 2022, 7, 100251.	4.4	31
5	The 3D Product Model Research Evolution and Future Trends: A Systematic Literature Review. Applied System Innovation, 2022, 5, 29.	4.6	5
6	Optimizing Crop Planting Schedule Considering Planting Window and Storage Capacity. Frontiers in Plant Science, 2022, 13, 762446.	3.6	5
7	A reinforcement Learning approach to resource allocation in genomic selection. Intelligent Systems With Applications, 2022, 14, 200076.	3.0	6
8	Ten simple rules to ruin a collaborative environment. PLoS Computational Biology, 2022, 18, e1009957.	3.2	1
9	The L-shaped selection algorithm for multitrait genomic selection. Genetics, 2022, 221, .	2.9	1
10	Application of the Two-layer Wrapper-Embedded Feature Selection Method to Improve Genomic Selection. , 2022, , .		0
11	Integrating Crop Simulation and Machine Learning Models to Improve Crop Yield Prediction. , 2022, , .		1
12	A two-layer feature selection method using Genetic Algorithm and Elastic Net. Expert Systems With Applications, 2021, 166, 114072.	7.6	100
13	Improving Manufacturing Supply Chain by Integrating SMED and Production Scheduling. Logistics, 2021, 5, 4.	4.3	6
14	Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Scientific Reports, 2021, 11, 1606.	3.3	160
15	The look ahead trace back optimizer for genomic selection under transparent and opaque simulators. Scientific Reports, 2021, 11, 4124.	3.3	6
16	A look-ahead Monte Carlo simulation method for improving parental selection in trait introgression. Scientific Reports, 2021, 11, 3918.	3.3	5
17	Closed-Loop Supply Chain Network Design under Uncertainties Using Fuzzy Decision Making. Logistics, 2021, 5, 15.	4.3	4
18	Interdisciplinary strategies to enable data-driven plant breeding in a changing climate. One Earth, 2021, 4, 372-383.	6.8	20

#	Article	IF	CITATIONS
19	Value of the 3D Product Model Use in Assembly Processes: Process Planning, Design, and Shop Floor Execution. Applied System Innovation, 2021, 4, 39.	4.6	5
20	A genetic algorithm-assisted deep learning approach for crop yield prediction. Soft Computing, 2021, 25, 10617-10628.	3.6	13
21	Corn Yield Prediction With Ensemble CNN-DNN. Frontiers in Plant Science, 2021, 12, 709008.	3.6	33
22	Closed-Loop Supply Chain Design with Sustainability Aspects and Network Resilience under Uncertainty: Modelling and Application. Mathematical Problems in Engineering, 2021, 2021, 1-23.	1.1	15
23	Quantitative Model for the Value of the 3D Product Model Use in Production Processes. Applied System Innovation, 2021, 4, 90.	4.6	2
24	A Multi-Stage Stochastic Programming Model for the Multi-Echelon Multi-Period Reverse Logistics Problem. Sustainability, 2021, 13, 13596.	3.2	4
25	A branch and bound algorithm to solve a two-machine no-wait flowshop scheduling problem with truncated learning function. International Journal of Management Science and Engineering Management, 2020, 15, 89-95.	3.1	4
26	Hybrid stochastic and robust optimization model for lot-sizing and scheduling problems under uncertainties. European Journal of Operational Research, 2020, 284, 485-497.	5.7	19
27	Production planning with a two-stage stochastic programming model in a kitting facility under demand and yield uncertainties. International Journal of Management Science and Engineering Management, 2020, 15, 237-246.	3.1	13
28	Forecasting Corn Yield With Machine Learning Ensembles. Frontiers in Plant Science, 2020, 11, 1120.	3.6	96
29	Improving Image-Based Plant Disease Classification With Generative Adversarial Network Under Limited Training Set. Frontiers in Plant Science, 2020, 11, 583438.	3.6	39
30	A Gated Recurrent Units (GRU)-Based Model for Early Detection of Soybean Sudden Death Syndrome through Time-Series Satellite Imagery. Remote Sensing, 2020, 12, 3621.	4.0	15
31	Multistage stochastic programming modeling for farmland irrigation management under uncertainty. PLoS ONE, 2020, 15, e0233723.	2.5	6
32	Multi-trait Genomic Selection Methods for Crop Improvement. Genetics, 2020, 215, 931-945.	2.9	38
33	Complementarityâ€based selection strategy for genomic selection. Crop Science, 2020, 60, 149-156.	1.8	10
34	A two-stage stochastic programming model for multi-period reverse logistics network design with lot-sizing. Computers and Industrial Engineering, 2020, 143, 106397.	6.3	18
35	Multi-product pickup and delivery supply chain design with location-routing and direct shipment. International Journal of Production Economics, 2020, 226, 107648.	8.9	24
36	Optimizing Ensemble Weights for Machine Learning Models: A Case Study for Housing Price Prediction. Springer Proceedings in Business and Economics, 2020, , 87-97.	0.3	11

#	Article	IF	CITATIONS
37	Machine Learning Methods for Quality Prediction in Production. Logistics, 2020, 4, 35.	4.3	11
38	Hub relay network design for daily driver routes. International Journal of Production Research, 2019, 57, 6130-6145.	7.5	13
39	Optimizing Selection and Mating in Genomic Selection with a Look-Ahead Approach: An Operations Research Framework. G3: Genes, Genomes, Genetics, 2019, 9, 2123-2133.	1.8	46
40	A two-stage stochastic programming model for production lot-sizing and scheduling under demand and raw material quality uncertainties. International Journal of Planning and Scheduling, 2019, 3, 1.	0.1	5
41	Maize yield and nitrate loss prediction with machine learning algorithms. Environmental Research Letters, 2019, 14, 124026.	5.2	119
42	A dynamic newsvendor problem with goodwill-dependent demands and minimum commitment. Omega, 2019, 89, 242-256.	5.9	12
43	Biomass supply contract pricing and environmental policy analysis: A simulation approach. Energy, 2018, 145, 557-566.	8.8	5
44	A multi-stage stochastic programming for lot-sizing and scheduling under demand uncertainty. Computers and Industrial Engineering, 2018, 119, 157-166.	6.3	44
45	A tri-level optimization model for inventory control with uncertain demand and lead time. International Journal of Production Economics, 2018, 195, 96-105.	8.9	23
46	Improving Response in Genomic Selection with a Population-Based Selection Strategy: Optimal Population Value Selection. Genetics, 2017, 206, 1675-1682.	2.9	43
47	Shop floor lot-sizing and scheduling with a two-stage stochastic programming model considering uncertain demand and workforce efficiency. Computers and Industrial Engineering, 2017, 111, 263-271.	6.3	16
48	A farm-level precision land management framework based on integer programming. PLoS ONE, 2017, 12, e0174680.	2.5	7
49	Agent-based modeling of bioenergy crop adoption and farmer decision-making. Energy, 2016, 115, 1188-1201.	8.8	19
50	A two-stage stochastic programming model for lot-sizing and scheduling under uncertainty. International Journal of Production Economics, 2016, 180, 198-207.	8.9	50
51	Scheduling algorithm based on follow-up sharing character for post-event response resource distribution in large-scal disasters. Journal of Systems Science and Systems Engineering, 2016, 25, 77-101.	1.6	3
52	Techno-economic analysis of biofuel production considering logistic configurations. Bioresource Technology, 2016, 206, 195-203.	9.6	27
53	Techno-economic analysis of advanced biofuel production based on bio-oil gasification. Bioresource Technology, 2015, 191, 88-96.	9.6	64
54	ls now a good time for Iowa to invest in cellulosic biofuels? A real options approach considering construction lead times. International Journal of Production Economics, 2015, 167, 97-107.	8.9	25

#	Article	IF	CITATIONS
55	An optimization model for sequential fast pyrolysis facility location-allocation under renewable fuel standard. Energy, 2015, 93, 1165-1172.	8.8	4
56	Optimization Model for a Thermochemical Biofuels Supply Network Design. Journal of Energy Engineering - ASCE, 2014, 140, .	1.9	15
57	Integrated supply chain design for commodity chemicals production via woody biomass fast pyrolysis and upgrading. Bioresource Technology, 2014, 157, 28-36.	9.6	27
58	An oligopoly model to analyze the market and social welfare for green manufacturing industry. Journal of Cleaner Production, 2014, 85, 94-103.	9.3	33
59	Mild catalytic pyrolysis of biomass for production of transportation fuels: a techno-economic analysis. Green Chemistry, 2014, 16, 627-636.	9.0	81
60	Supply chain design under uncertainty for advanced biofuel production based on bio-oil gasification. Energy, 2014, 74, 576-584.	8.8	66
61	Life cycle assessment of commodity chemical production from forest residue via fast pyrolysis. International Journal of Life Cycle Assessment, 2014, 19, 1371-1381.	4.7	23
62	Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing. Fuel, 2013, 106, 463-469.	6.4	166
63	Supply chain design and operational planning models for biomass to drop-in fuel production. Biomass and Bioenergy, 2013, 58, 238-250.	5.7	62
64	Comparative techno-economic analysis of biohydrogen production via bio-oil gasification andÂbio-oil reforming. Biomass and Bioenergy, 2013, 51, 99-108.	5.7	96
65	Techno-economic analysis of two bio-oil upgrading pathways. Chemical Engineering Journal, 2013, 225, 895-904.	12.7	96
66	Techno-economic analysis of monosaccharide production via fast pyrolysis of lignocellulose. Bioresource Technology, 2013, 127, 358-365.	9.6	101
67	Optimization models for biorefinery supply chain network design under uncertainty. Journal of Renewable and Sustainable Energy, 2013, 5, .	2.0	36
68	Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis. Environmental Research Letters, 2013, 8, 025001.	5.2	46
69	Technoeconomic Sensitivity of Biobased Hydrocarbon Production via Fast Pyrolysis to Government Incentive Programs. Journal of Energy Engineering - ASCE, 2012, 138, 54-62.	1.9	11
70	Technoâ€economic analysis of biobased chemicals production via integrated catalytic processing. Biofuels, Bioproducts and Biorefining, 2012, 6, 73-87.	3.7	89
71	Toward a More Sustainable, Local Food Production System—From a System Modeling Perspective. Journal of Hunger and Environmental Nutrition, 2011, 6, 125-127.	1.9	0
72	Analyzing Sustainable, Localized Food Production Systems With a Systematic Optimization Model. Journal of Hunger and Environmental Nutrition, 2011, 6, 220-232.	1.9	3

#	Article	IF	CITATIONS
73	Machine Learning Prediction of Nitrification From Ammonia- and Nitrite-Oxidizer Community Structure. Frontiers in Microbiology, 0, 13, .	3.5	0