
Patrick J Walsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1625219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Green Chemistry Approach to Asymmetric Catalysis:  Solvent-Free and Highly Concentrated Reactions. Chemical Reviews, 2007, 107, 2503-2545.	23.0	328
2	Palladium-Catalyzed C(sp ³)–H Arylation of Diarylmethanes at Room Temperature: Synthesis of Triarylmethanes via Deprotonative-Cross-Coupling Processes. Journal of the American Chemical Society, 2012, 134, 13765-13772.	6.6	192
3	Use of Achiral and Meso Ligands To Convey Asymmetry in Enantioselective Catalysis. Chemical Reviews, 2003, 103, 3297-3344.	23.0	187
4	The electrochemical behavior of cerium(III/IV) complexes: Thermodynamics, kinetics and applications in synthesis. Coordination Chemistry Reviews, 2014, 260, 21-36.	9.5	169
5	NiXantphos: A Deprotonatable Ligand for Room-Temperature Palladium-Catalyzed Cross-Couplings of Aryl Chlorides. Journal of the American Chemical Society, 2014, 136, 6276-6287.	6.6	145
6	Photocatalytic C–H activation and the subtle role of chlorine radical complexation in reactivity. Science, 2021, 372, 847-852.	6.0	144
7	Cobalt–Bisoxazoline-Catalyzed Asymmetric Kumada Cross-Coupling of Racemic α-Bromo Esters with Aryl Grignard Reagents. Journal of the American Chemical Society, 2014, 136, 17662-17668.	6.6	137
8	Titanium-Catalyzed Enantioselective Additions of Alkyl Groups to Aldehydes:  Mechanistic Studies and New Concepts in Asymmetric Catalysis. Accounts of Chemical Research, 2003, 36, 739-749.	7.6	132
9	Nickel/Photoredox atalyzed Asymmetric Reductive Cross oupling of Racemic α hloro Esters with Aryl Iodides. Angewandte Chemie - International Edition, 2020, 59, 5172-5177.	7.2	117
10	Tandem Reactions for Streamlining Synthesis: Enantio- and Diastereoselective One-Pot Generation of Functionalized Epoxy Alcohols. Accounts of Chemical Research, 2008, 41, 883-893.	7.6	116
11	Diaryl Sulfoxides from Aryl Benzyl Sulfoxides: A Single Palladiumâ€Catalyzed Triple Relay Process. Angewandte Chemie - International Edition, 2014, 53, 260-264.	7.2	110
12	Innentitelbild: Synergistic Nâ€Heterocyclic Carbene/Palladiumâ€Catalyzed Umpolung 1,4â€Addition of Aryl Iodides to Enals (Angew. Chem. 1/2020). Angewandte Chemie, 2020, 132, 2-2.	1.6	110
13	Raising the p <i>K</i> _a Limit of "Soft―Nucleophiles in Palladium-Catalyzed Allylic Substitutions: Application of Diarylmethane Pronucleophiles. Journal of the American Chemical Society, 2013, 135, 17602-17609.	6.6	109
14	Four-Carbon Criegee Intermediate from Isoprene Ozonolysis: Methyl Vinyl Ketone Oxide Synthesis, Infrared Spectrum, and OH Production. Journal of the American Chemical Society, 2018, 140, 10866-10880.	6.6	109
15	Palladium-Catalyzed Direct Arylation of Methyl Sulfoxides with Aryl Halides. Journal of the American Chemical Society, 2013, 135, 3740-3743.	6.6	108
16	Synthesis of Polyarylated Methanes through Crossâ€Coupling of Tricarbonylchromiumâ€Activated Benzyllithiums. Angewandte Chemie - International Edition, 2010, 49, 5541-5544.	7.2	104
17	Visible light-promoted CO2 fixation with imines to synthesize diaryl α-amino acids. Nature Communications, 2018, 9, 4936.	5.8	99
18	Palladium-Catalyzed Allylic Substitution with (η ⁶ -Arene–CH ₂ Z)Cr(CO) ₃ -Based Nucleophiles. Journal of the American Chemical Society, 2011, 133, 20552-20560.	6.6	93

#	Article	IF	CITATIONS
19	Transition-metal-free chemo- and regioselective vinylation of azaallyls. Nature Chemistry, 2017, 9, 997-1004.	6.6	91
20	Additive effects on palladium-catalyzed deprotonative-cross-coupling processes (DCCP) of sp ³ C–H bonds in diarylmethanes. Chemical Science, 2013, 4, 849-857.	3.7	90
21	Synthesis of diarylmethylamines via palladium-catalyzed regioselective arylation of 1,1,3-triaryl-2-azaallyl anions. Chemical Science, 2014, 5, 2383.	3.7	86
22	The Impact of Ligand Reorganization on Cerium(III) Oxidation Chemistry. Angewandte Chemie - International Edition, 2012, 51, 10159-10163.	7.2	80
23	Nickel-catalyzed arylation of heteroaryl-containing diarylmethanes: exceptional reactivity of the Ni(NIXANTPHOS)-based catalyst. Chemical Science, 2016, 7, 611-618.	3.7	79
24	Transition-Metal-Free Radical C(sp ³)–C(sp ²) and C(sp ³)–C(sp ³) Coupling Enabled by 2-Azaallyls as Super-Electron-Donors and Coupling-Partners. Journal of the American Chemical Society, 2017, 139, 16327-16333.	6.6	77
25	Synthesis of BCP Benzylamines From 2â€Azaallyl Anions and [1.1.1]Propellane. Angewandte Chemie - International Edition, 2018, 57, 15857-15861.	7.2	77
26	Migratory functionalization of unactivated alkyl bromides for construction of all-carbon quaternary centers via transposed tert-C-radicals. Nature Communications, 2020, 11, 4860.	5.8	77
27	Asymmetric Cross oupling of Aryl Triflates to the Benzylic Position of Benzylamines. Angewandte Chemie - International Edition, 2012, 51, 11510-11513.	7.2	74
28	Catalytic Asymmetric Generation of (<i>Z</i>)-Disubstituted Allylic Alcohols. Journal of the American Chemical Society, 2007, 129, 16119-16125.	6.6	72
29	Cationâ [~] Ï€ Interactions in the Benzylic Arylation of Toluenes with Bimetallic Catalysts. Journal of the American Chemical Society, 2018, 140, 12415-12423.	6.6	72
30	Palladiumâ€Catalyzed Câ^'H Arylation of α,βâ€Unsaturated Imines: Catalystâ€Controlled Synthesis of Enamine and Allylic Amine Derivatives. Angewandte Chemie - International Edition, 2016, 55, 2825-2829.	7.2	71
31	Palladium-Catalyzed Enantioselective Arylation of Aryl Sulfenate Anions: A Combined Experimental and Computational Study. Journal of the American Chemical Society, 2017, 139, 8337-8345.	6.6	71
32	Nickel atalyzed Allylic Alkylation with Diarylmethane Pronucleophiles: Reaction Development and Mechanistic Insights. Angewandte Chemie - International Edition, 2016, 55, 1070-1074.	7.2	69
33	One-pot aminobenzylation of aldehydes with toluenes. Nature Communications, 2018, 9, 3365.	5.8	69
34	Synthesis of Indoles through Domino Reactions of 2â€Fluorotoluenes and Nitriles. Angewandte Chemie - International Edition, 2019, 58, 11033-11038.	7.2	69
35	Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework. Journal of the American Chemical Society, 2013, 135, 19016-19024.	6.6	68
36	Palladium-Catalyzed Arylation of Alkyl Sulfenate Anions. Journal of the American Chemical Society, 2015, 137, 13887-13893.	6.6	68

#	Article	IF	CITATIONS
37	Visible-Light-Mediated Umpolung Reactivity of Imines: Ketimine Reductions with Cy ₂ NMe and Water. Organic Letters, 2018, 20, 2433-2436.	2.4	68
38	Palladium-Catalyzed Debenzylative Cross-Coupling of Aryl Benzyl Sulfides with Aryl Bromides: Synthesis of Diaryl Sulfides. Organic Letters, 2014, 16, 5304-5307.	2.4	65
39	Photoredox-catalyzed oxo-amination of aryl cyclopropanes. Nature Communications, 2019, 10, 4367.	5.8	65
40	Palladium-Catalyzed Regioselective Arylation of 1,1,3-Triaryl-2-azaallyl Anions with Aryl Chlorides. Organic Letters, 2014, 16, 4312-4315.	2.4	63
41	Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9733-9740.	3.3	63
42	Asymmetric Cyclopropanation of Allylic Alcohols Employing Sulfonamide/Schiff Base Ligands. Journal of Organic Chemistry, 2000, 65, 5005-5008.	1.7	62
43	Efficient Approaches to the Stereoselective Synthesis of Cyclopropyl Alcohols. Accounts of Chemical Research, 2012, 45, 1533-1547.	7.6	62
44	Palladium atalyzed Asymmetric Allylic Alkylations with Toluene Derivatives as Pronucleophiles. Angewandte Chemie - International Edition, 2016, 55, 2526-2530.	7.2	61
45	Synthesis of Benzofuran Derivatives through Cascade Radical Cyclization/Intermolecular Coupling of 2â€Azaallyls. Angewandte Chemie - International Edition, 2019, 58, 2826-2830.	7.2	60
46	Unprecedented Alkene Complex of Zinc(II):Â Structures and Bonding of Divinylzinc Complexes. Journal of the American Chemical Society, 2006, 128, 4624-4631.	6.6	59
47	A General and Practical Palladium atalyzed Direct αâ€Arylation of Amides with Aryl Halides. Advanced Synthesis and Catalysis, 2014, 356, 165-178.	2.1	59
48	Arylation of Aldehyde Homoenolates with Aryl Bromides. Organic Letters, 2013, 15, 2298-2301.	2.4	57
49	One-Pot Multicomponent Coupling Methods for the Synthesis of Diastereo- and Enantioenriched (<i>Z</i>)-Trisubstituted Allylic Alcohols. Journal of the American Chemical Society, 2009, 131, 8434-8445.	6.6	55
50	Highly Enantio- and Diastereoselective One-Pot Methods for the Synthesis of Halocyclopropyl Alcohols. Journal of the American Chemical Society, 2009, 131, 954-962.	6.6	54
51	Synergistic Nâ€Heterocyclic Carbene/Palladium atalyzed Umpolung 1,4â€Addition of Aryl Iodides to Enals. Angewandte Chemie - International Edition, 2020, 59, 161-166.	7.2	54
52	A One-Pot Multicomponent Coupling Reaction for the Stereocontrolled Synthesis of (Z)-Trisubstituted Allylic Alcohols. Journal of the American Chemical Society, 2004, 126, 3702-3703.	6.6	53
53	Positional Selectivity in C–H Functionalizations of 2-Benzylfurans with Bimetallic Catalysts. Journal of the American Chemical Society, 2016, 138, 4260-4266.	6.6	53
54	Reductive Cross-Coupling of Aldehydes and Imines Mediated by Visible Light Photoredox Catalysis. Organic Letters, 2019, 21, 27-31.	2.4	53

#	Article	IF	CITATIONS
55	Overriding Felkin Control: A General Method for Highly Diastereoselective Chelation-Controlled Additions to α-Silyloxy Aldehydes. Journal of the American Chemical Society, 2010, 132, 4399-4408.	6.6	52
56	Synthesis, Electronic Spectroscopy, and Photochemistry of Methacrolein Oxide: A Four-Carbon Unsaturated Criegee Intermediate from Isoprene Ozonolysis. Journal of the American Chemical Society, 2019, 141, 15058-15069.	6.6	52
57	Insight into Substrate Binding in Shibasaki's Li3(THF)n(BINOLate)3Ln Complexes and Implications in Catalysis. Journal of the American Chemical Society, 2008, 130, 7407-7419.	6.6	51
58	Generation and Tandem Reactions of 1-Alkenyl-1,1-Heterobimetallics:  Practical and Versatile Reagents for Organic Synthesis. Journal of the American Chemical Society, 2008, 130, 3521-3531.	6.6	50
59	Room-temperature palladium-catalyzed direct 2-arylation of benzoxazoles with aryl and heteroaryl bromides. Chemical Communications, 2014, 50, 10661-10664.	2.2	48
60	Rhodium(<scp>i</scp>)-catalyzed C6-selective C–H alkenylation and polyenylation of 2-pyridones with alkenyl and conjugated polyenyl carboxylic acids. Chemical Science, 2019, 10, 10089-10096.	3.7	47
61	Palladium Catalyzed Diaryl Sulfoxide Generation from Aryl Benzyl Sulfoxides and Aryl Chlorides. Organic Letters, 2015, 17, 1168-1171.	2.4	46
62	Air- and Water-Tolerant Rare Earth Guanidinium BINOLate Complexes as Practical Precatalysts in Multifunctional Asymmetric Catalysis. Journal of the American Chemical Society, 2014, 136, 8034-8041.	6.6	44
63	Cobaltâ€Catalyzed Enantioselective Negishi Crossâ€Coupling of Racemic αâ€Bromo Esters with Arylzincs. Chemistry - A European Journal, 2018, 24, 2059-2064.	1.7	43
64	Chemo―and Regioselective C(sp ³)H Arylation of Unactivated Allylarenes by Deprotonative Cross oupling. Angewandte Chemie - International Edition, 2014, 53, 3693-3697.	7.2	42
65	The effect of chemical structure on the stability of physical vapor deposited glasses of 1,3,5-triarylbenzene. Journal of Chemical Physics, 2015, 143, 084506.	1.2	42
66	Reactions of 2â€Arylâ€1,3â€Dithianes and [1.1.1]Propellane. Angewandte Chemie - International Edition, 2019, 58, 13416-13420.	7.2	42
67	Direct, Stereospecific Generation of (Z)-Disubstituted Allylic Alcohols. Journal of the American Chemical Society, 2006, 128, 9618-9619.	6.6	41
68	Alkaline-Metal-Catalyzed One-Pot Aminobenzylation of Aldehydes with Toluenes. Organic Letters, 2019, 21, 8514-8518.	2.4	41
69	Highly Diastereoselective Chelation-Controlled Additions to α-Silyloxy Ketones. Journal of the American Chemical Society, 2011, 133, 7969-7976.	6.6	39
70	Synthesis, Bonding, and Reactivity of a Cerium(IV) Fluoride Complex. Inorganic Chemistry, 2014, 53, 27-29.	1.9	39
71	2â€Azaallyl Anions as Lightâ€Tunable Superâ€Electronâ€Donors: Coupling with Aryl Fluorides, Chlorides, and Bromides. Advanced Synthesis and Catalysis, 2018, 360, 2854-2868.	2.1	39
72	Copper-Catalyzed Intermolecular Difunctionalization of Styrenes with Thiosulfonates and Arylboronic Acids via a Radical Relay Pathway. ACS Catalysis, 2020, 10, 2633-2639.	5.5	39

#	Article	IF	CITATIONS
73	Catalytic enantioselective reductive domino alkyl arylation of acrylates via nickel/photoredox catalysis. Nature Communications, 2021, 12, 6613.	5.8	39
74	A New Class of Organocatalysts: Sulfenate Anions. Angewandte Chemie - International Edition, 2014, 53, 10755-10758.	7.2	38
75	Ni(NIXANTPHOS)-Catalyzed Mono-Arylation of Toluenes with Aryl Chlorides and Bromides. Organic Letters, 2019, 21, 1735-1739.	2.4	38
76	Rh(I)-Catalyzed C6-Selective Decarbonylative Alkylation of 2-Pyridones with Alkyl Carboxylic Acids and Anhydrides. Organic Letters, 2020, 22, 4228-4234.	2.4	37
77	Palladium-Catalyzed Arylation of Aryl Sulfenate Anions with Aryl Bromides under Mild Conditions: Synthesis of Diaryl Sulfoxides. Organic Letters, 2016, 18, 972-975.	2.4	36
78	Organocatalytic Synthesis of Alkynes. Journal of the American Chemical Society, 2015, 137, 10346-10350.	6.6	34
79	Autocatalytic photoredox Chan-Lam coupling of free diaryl sulfoximines with arylboronic acids. Nature Communications, 2021, 12, 932.	5.8	34
80	Umpolung Synthesis of Diarylmethylamines <i>via</i> Palladium―Catalyzed Arylation of <i>N</i> â€Benzyl Aldimines. Advanced Synthesis and Catalysis, 2016, 358, 1910-1915.	2.1	33
81	Palladium-Catalyzed Benzylic C–H Arylation of Azaarylmethylamines. Organic Letters, 2015, 17, 5788-5791.	2.4	32
82	Transition-metal-free C(sp ³)–H/C(sp ³)–H dehydrogenative coupling of saturated heterocycles with <i>N</i> -benzyl imines. Chemical Science, 2020, 11, 7619-7625.	3.7	32
83	Chelation-Controlled Addition of Organozincs to α-Chloro Aldimines. Journal of the American Chemical Society, 2012, 134, 17599-17604.	6.6	30
84	Experimental Evidence of Dioxole Unimolecular Decay Pathway for Isoprene-Derived Criegee Intermediates. Journal of Physical Chemistry A, 2020, 124, 3542-3554.	1.1	30
85	Strain-release 2-azaallyl anion addition/borylation of [1.1.1]propellane: synthesis and functionalization of benzylamine bicyclo[1.1.1]pentyl boronates. Chemical Science, 2021, 12, 7066-7072.	3.7	30
86	Evidence for Substrate Binding by the Lanthanide Centers in [Li3(thf)n(binolate)3Ln]: Solution and Solid-State Characterization of Seven- and Eight-Coordinate [Li3(sol)n(binolate)3Ln(S)m] Adducts. Angewandte Chemie - International Edition, 2006, 45, 2549-2552.	7.2	29
87	Nickel-Catalyzed Desymmetrizing Cross-Electrophile Coupling of Cyclic <i>Meso</i> -Anhydrides. Organic Letters, 2018, 20, 1191-1194.	2.4	29
88	Chemoselective palladium-catalyzed deprotonative arylation/[1,2]-Wittig rearrangement of pyridylmethyl ethers. Chemical Science, 2016, 7, 976-983.	3.7	28
89	Palladium-catalysed synthesis of triaryl(heteroaryl)methanes. Nature Communications, 2017, 8, 14641.	5.8	28
90	Birefringent Stable Glass with Predominantly Isotropic Molecular Orientation. Physical Review Letters, 2017, 119, 095502.	2.9	28

#	Article	IF	CITATIONS
91	Nickel-Catalyzed C(sp ³)–H Arylation of Diarylmethane Derivatives with Aryl Fluorides. Journal of Organic Chemistry, 2018, 83, 2993-2999.	1.7	28
92	Palladium-Catalyzed Selective α-Alkenylation of Pyridylmethyl Ethers with Vinyl Bromides. Organic Letters, 2016, 18, 2371-2374.	2.4	27
93	Impact of Naâ^' and Kâ^'C Ï€-Interactions on the Structure and Binding of M ₃ (sol) <i>_n</i> (BINOLate) ₃ Ln Catalysts. Organic Letters, 2007, 9, 3359-3362.	2.4	25
94	Palladium-Catalyzed α-Arylation of Aryl Acetic Acid Derivatives via Dienolate Intermediates with Aryl Chlorides and Bromides. Organic Letters, 2015, 17, 410-413.	2.4	25
95	The role of dynamic ligand exchange in the oxidation chemistry of cerium(<scp>iii</scp>). Chemical Science, 2016, 7, 4537-4547.	3.7	25
96	Benzylic Aroylation of Toluenes Mediated by a LiN(SiMe ₃) ₂ /Cs ⁺ System. Journal of Organic Chemistry, 2022, 87, 406-418.	1.7	25
97	Reversedâ€Polarity Synthesis of Diaryl Ketones through Palladiumâ€Catalyzed Direct Arylation of 2â€Arylâ€1,3â€dithianes. Advanced Synthesis and Catalysis, 2014, 356, 3659-3667.	2.1	24
98	Synthesis of BCP Benzylamines From 2â€Azaallyl Anions and [1.1.1]Propellane. Angewandte Chemie, 2018, 130, 16083-16087.	1.6	24
99	An Efficient Route to Isochromene Derivatives via Cascade Radical Cyclization and Radicalâ€Radical Coupling. Advanced Synthesis and Catalysis, 2019, 361, 4354-4359.	2.1	24
100	Nickel-catalyzed reductive coupling of homoenolates and their higher homologues with unactivated alkyl bromides. Nature Communications, 2020, 11, 5638.	5.8	24
101	Nickel/Photoredoxâ€Catalyzed Asymmetric Reductive Crossâ€Coupling of Racemic αâ€Chloro Esters with Aryl Iodides. Angewandte Chemie, 2020, 132, 5210-5215.	1.6	24
102	Palladium atalyzed Direct αâ€Arylation of Benzyl Thioethers with Aryl Bromides. Advanced Synthesis and Catalysis, 2014, 356, 2517-2524.	2.1	22
103	Exchange Processes in Shibasaki's Rare Earth Alkali Metal BINOLate Frameworks and Their Relevance in Multifunctional Asymmetric Catalysis. Journal of the American Chemical Society, 2015, 137, 7135-7144.	6.6	22
104	Nickel atalyzed Allylic Alkylation with Diarylmethane Pronucleophiles: Reaction Development and Mechanistic Insights. Angewandte Chemie, 2016, 128, 1082-1086.	1.6	22
105	Palladium atalyzed Asymmetric Allylic Alkylations with Toluene Derivatives as Pronucleophiles. Angewandte Chemie, 2016, 128, 2572-2576.	1.6	22
106	Aryl Fluoride Activation through Palladium–Magnesium Bimetallic Cooperation: A Mechanistic and Computational Study. ACS Catalysis, 2020, 10, 7934-7944.	5.5	22
107	Exploring the Importance of Surface Diffusion in Stability of Vapor-Deposited Organic Glasses. Journal of Physical Chemistry B, 2019, 123, 4108-4117.	1.2	21
108	Effects of microstructure formation on the stability of vapor-deposited glasses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5937-5942.	3.3	21

#	Article	IF	CITATIONS
109	Palladiumâ€Catalyzed αâ€Arylation of Methyl Sulfonamides with Aryl Chlorides. Advanced Synthesis and Catalysis, 2016, 358, 2156-2162.	2.1	20
110	Arylation of Azaarylmethylamines with Aryl Chlorides and a NiBr ₂ /NIXANTPHOSâ€based Catalyst. Advanced Synthesis and Catalysis, 2017, 359, 2890-2894.	2.1	20
111	NIXANTPHOS: a highly active ligand for palladium catalyzed Buchwald–Hartwig amination of unactivated aryl chlorides. Dalton Transactions, 2018, 47, 8690-8696.	1.6	20
112	Transition Metalâ€Free Aroylation of Diarylmethanes with <i>N</i> â€Bnâ€ <i>N</i> â€Boc Arylamides and <i>N</i> â€Acylpyrroles. Advanced Synthesis and Catalysis, 2020, 362, 3423-3430.	2.1	20
113	Isolation and characterization of a covalent CeIV-Aryl complex with an anomalous 13C chemical shift. Nature Communications, 2021, 12, 1713.	5.8	20
114	Tandem C(<i>sp</i> ³)â^'H Arylation/Oxidation and Arylation/Allylic Substitution of Isoindolinones. Advanced Synthesis and Catalysis, 2016, 358, 2829-2837.	2.1	19
115	Palladium-Catalyzed Enantioselective Alkenylation of Sulfenate Anions. Organic Letters, 2019, 21, 960-964.	2.4	19
116	Synthesis of an elusive, stable 2-azaallyl radical guided by electrochemical and reactivity studies of 2-azaallyl anions. Chemical Science, 2021, 12, 4405-4410.	3.7	19
117	Discovery and mechanistic investigation of photoinduced sp3 C–H activation of hydrocarbons by the simple anion hexachlorotitanate. Chem Catalysis, 2022, 2, 853-866.	2.9	19
118	Synthesis and Catalytic Activity of Heterobimetallic Rare Earth–Zinc Ethyl BINOLate Analogues of Shibasaki's Catalysts. Organometallics, 2013, 32, 7431-7439.	1.1	18
119	Palladiumâ€Catalyzed Câ`'H Arylation of α,βâ€Unsaturated Imines: Catalystâ€Controlled Synthesis of Enamine and Allylic Amine Derivatives. Angewandte Chemie, 2016, 128, 2875-2879.	1.6	18
120	Palladium-Catalyzed Direct C–H Arylation of 3-(Methylsulfinyl)thiophenes. Organic Letters, 2018, 20, 2522-2525.	2.4	18
121	Synthesis of triarylmethanols via tandem arylation/oxidation of diarylmethanes. Tetrahedron Letters, 2015, 56, 3604-3607.	0.7	17
122	Combining Pd(ï€-allyl)Cp and PPh3 as a unique catalyst for efficient synthesis of alkyliodo indoles via C(sp3)–l reductive elimination. Organic Chemistry Frontiers, 2015, 2, 1080-1084.	2.3	17
123	Base-Promoted Tandem Synthesis of 2-Azaaryl Tetrahydroquinolines. Organic Letters, 2021, 23, 1594-1599.	2.4	17
124	Rhodium(III)â€Catalyzed Câ~'H Bond Functionalization of 2â€Pyridones with Alkynes: Switchable Alkenylation, Alkenylation/Directing Group Migration and Rollover Annulation. Chemistry - A European Journal, 2021, 27, 8811-8821.	1.7	17
125	Chemoselective synthesis of aryl(pyridinyl)methanol derivatives through Ni-NIXANTPHOS catalyzed α-arylation and tandem arylation/rearrangement of pyridylmethyl ethers. Organic Chemistry Frontiers, 2018, 5, 1870-1876.	2.3	16
126	Functionalized Hydroperoxide Formation from the Reaction of Methacrolein-Oxide, an Isoprene-Derived Criegee Intermediate, with Formic Acid: Experiment and Theory. Molecules, 2021, 26, 3058.	1.7	16

#	Article	IF	CITATIONS
127	N-Acyl pyrroles: chemoselective pyrrole dance vs. C–H functionalization/aroylation of toluenes. Organic Chemistry Frontiers, 0, , .	2.3	16
128	Synthesis and high-throughput characterization of structural analogues of molecular glassformers: 1,3,5-trisarylbenzenes. Soft Matter, 2015, 11, 7558-7566.	1.2	15
129	Palladium-Catalyzed Benzylic Arylation of Pyridylmethyl Silyl Ethers: One-Pot Synthesis of Aryl(pyridyl)methanols. Organic Letters, 2016, 18, 1590-1593.	2.4	14
130	Palladium atalyzed Alkenylation of Azaarylmethylamines with Vinyl Halides. Advanced Synthesis and Catalysis, 2018, 360, 4837-4842.	2.1	14
131	Synthesis of Diaryl Selenides via Palladium-Catalyzed Debenzylative Cross-Coupling of Aryl Benzyl Selenides with Aryl Bromides. Organometallics, 2018, 37, 4086-4091.	1.1	14
132	Photodissociation dynamics of methyl vinyl ketone oxide: A four-carbon unsaturated Criegee intermediate from isoprene ozonolysis. Journal of Chemical Physics, 2021, 155, 174305.	1.2	14
133	Light-mediated aerobic oxidation of C(sp ³)–H bonds by a Ce(<scp>iv</scp>) hexachloride complex. Organic Chemistry Frontiers, 2022, 9, 2612-2620.	2.3	14
134	Synthesis of Chiral <i>N</i> â€Sulfonyl and <i>N</i> â€Phosphinoyl αâ€Halo Aldimine Precursors. Advanced Synthesis and Catalysis, 2013, 355, 757-764.	2.1	13
135	Palladium atalyzed C(sp ³)H Arylation of <i>N</i> â€Boc Benzylalkylamines via a Deprotonative Crossâ€Coupling Process. Chemistry - A European Journal, 2015, 21, 11010-11013.	1.7	13
136	A DFT Study on the Conversion of Aryl Iodides to Alkyl Iodides: Reductive Elimination of Râ^'l from Alkylpalladium Iodide Complexes with Accessible βâ€Hydrogens. Chemistry - A European Journal, 2016, 22, 3422-3429.	1.7	13
137	Selenolate Anion as an Organocatalyst: Reactions and Mechanistic Studies. Advanced Synthesis and Catalysis, 2018, 360, 1685-1692.	2.1	13
138	Palladium atalyzed Triarylation of <i>sp</i> ³ Câ^'H Bonds in Heteroarylmethanes: Synthesis of Triaryl(heteroaryl)methanes. Advanced Synthesis and Catalysis, 2018, 360, 1493-1498.	2.1	13
139	Palladium atalysed Decarboxylative Generation and Regiodivergent Prenylation of 2â€Azaallyl Anions. Advanced Synthesis and Catalysis, 2019, 361, 3751-3757.	2.1	13
140	Synthesis of Indoles through Domino Reactions of 2â€Fluorotoluenes and Nitriles. Angewandte Chemie, 2019, 131, 11149-11154.	1.6	13
141	Formic acid catalyzed isomerization and adduct formation of an isoprene-derived Criegee intermediate: experiment and theory. Physical Chemistry Chemical Physics, 2020, 22, 26796-26805.	1.3	13
142	Ironâ€Catalyzed Tertiary Alkylation of Terminal Alkynes with 1,3â€Diesters via a Functionalized Alkyl Radical. Angewandte Chemie - International Edition, 2021, 60, 9706-9711.	7.2	13
143	Uranium(IV) BINOLate Heterobimetallics: Synthesis and Reactivity in an Asymmetric Diels–Alder Reaction. Organometallics, 2013, 32, 1493-1499.	1.1	12
144	Rh(I) atalyzed Direct C6â^'H Arylation of 2â€Pyridones with Aryl Carboxylic Acids. Advanced Synthesis and Catalysis, 2021, 363, 3995-4001.	2.1	12

#	Article	IF	CITATIONS
145	Chemo- and diastereoselective tandem dual oxidation of B(pin)-substituted allylic alcohols: synthesis of B(pin)-substituted epoxy alcohols, 2-keto-anti-1,3-diols and dihydroxy-tetrahydrofuran-3-ones. Chemical Science, 2013, 4, 3946.	3.7	11
146	Nonâ€Covalent Immobilization of Rare Earth Heterobimetallic Frameworks and their Reactivity in an Asymmetric Michael Addition. Advanced Synthesis and Catalysis, 2014, 356, 1243-1254.	2.1	11
147	Nickel-catalyzed enantioselective vinylation of aryl 2-azaallyl anions. Chemical Science, 2021, 12, 6406-6412.	3.7	11
148	Expanding the Rare-Earth Metal BINOLate Catalytic Multitool beyond Enantioselective Organic Synthesis. Accounts of Chemical Research, 2021, 54, 2637-2648.	7.6	11
149	Alkali-amide controlled selective synthesis of 7-azaindole and 7-azaindoline through domino reactions of 2-fluoro-3-methylpyridine and aldehydes. Organic Chemistry Frontiers, 2022, 9, 2541-2548.	2.3	11
150	Synthesis of Diarylated 4â€Pyridylmethyl Ethers via Palladiumâ€Catalyzed Crossâ€Coupling Reactions. Advanced Synthesis and Catalysis, 2017, 359, 1927-1932.	2.1	10
151	Reactions of 2â€Arylâ€1,3â€Dithianes and [1.1.1]Propellane. Angewandte Chemie, 2019, 131, 13550-13554.	1.6	10
152	Synthesis of Benzofuran Derivatives through Cascade Radical Cyclization/Intermolecular Coupling of 2â€Azaallyls. Angewandte Chemie, 2019, 131, 2852-2856.	1.6	10
153	Palladium atalyzed Allylic Alkylation of 2â€Arylâ€1,3â€Dithianes, an Umpolung Synthesis of β,γâ€Unsaturatec Ketones. Advanced Synthesis and Catalysis, 2019, 361, 502-509.	d 2.1	10
154	Synergistic Nâ€Heterocyclic Carbene/Palladium atalyzed Umpolung 1,4â€Addition of Aryl Iodides to Enals. Angewandte Chemie, 2020, 132, 167-172.	1.6	10
155	Transition-metal-free allylation of 2-azaallyls with allyl ethers through polar and radical mechanisms. Nature Communications, 2021, 12, 3860.	5.8	10
156	Unraveling Conformer-Specific Sources of Hydroxyl Radical Production from an Isoprene-Derived Criegee Intermediate by Deuteration. Journal of Physical Chemistry A, 2020, 124, 4929-4938.	1.1	10
157	Super-Electron-Donor 2-Azaallyl Anions Enable Construction of Isoquinolines. Organic Letters, 2022, 24, 1786-1790.	2.4	10
158	Temperature-dependent nonlinear effects and catalyst evolution in the asymmetric addition of diethylzinc to benzaldehyde. Israel Journal of Chemistry, 2001, 41, 251-262.	1.0	9
159	Tandem catalytic enantio―and diastereoselective synthesis of cyclopropyl alcohols using aryl aldehydes. Journal of Physical Organic Chemistry, 2012, 25, 933-938.	0.9	9
160	Chelation-Controlled Additions to α-Silyloxy Aldehydes: An Autocatalytic Approach. Organic Letters, 2013, 15, 6174-6177.	2.4	9
161	Breaking conjugation: unusual regioselectivity with 2-substituted allylic substrates in the Tsuji–Trost reaction. Chemical Science, 2014, 5, 1241-1250.	3.7	9
162	Palladiumâ€Catalyzed Chemoselective αâ€Arylation of Methyl Sulfones with Aryl Chlorides. Asian Journal of Organic Chemistry, 2017, 6, 654-657.	1.3	9

#	Article	IF	CITATIONS
163	Sulfenate anions as organocatalysts for benzylic chloromethyl coupling polymerization via C=C bond formation. Nature Communications, 2018, 9, 1754.	5.8	9
164	One-Pot Aminoalkylation of Aldehydes: Diastereoselective Synthesis of Vicinal Diamines with Azaarylmethylamines. Organic Letters, 2019, 21, 8679-8683.	2.4	9
165	Palladium-catalyzed benzylic C(sp ³)–H carbonylative arylation of azaarylmethyl amines with aryl bromides. Chemical Science, 2021, 12, 10862-10870.	3.7	9
166	Synthesis of novel copper-rare earth BINOLate frameworks from a hydrogen bonding DBU-H rare earth BINOLate complex. Dalton Transactions, 2018, 47, 14408-14410.	1.6	8
167	Selenenate Anions (PhSeO ^{â^'}) as Organocatalyst: Synthesis of <i>trans</i> ‣tilbenes and a PPV Derivative. Advanced Synthesis and Catalysis, 2020, 362, 659-666.	2.1	8
168	DesignÂof a homologous series of molecular glassformers. Journal of Chemical Physics, 2021, 155, 224503.	1.2	8
169	Role of Molecular Layering in the Enhanced Mechanical Properties of Stable Glasses. Journal of Physical Chemistry Letters, 2022, 13, 3360-3368.	2.1	8
170	Nickel-Catalyzed Reductive Coupling of γ-Metalated Ketones with Unactivated Alkyl Bromides. Organic Letters, 2022, 24, 3987-3992.	2.4	8
171	A Simple Procedure for the Synthesis of β â€Hydroxyallenamides via Homoallenylation of Aldehydes. Advanced Synthesis and Catalysis, 2018, 360, 1426-1432.	2.1	7
172	SET activation of nitroarenes by 2-azaallyl anions as a straightforward access to 2,5-dihydro-1,2,4-oxadiazoles. Nature Communications, 2021, 12, 7060.	5.8	7
173	Enantioenriched BCP Benzylamine Synthesis via Metal Hydride Hydrogen Atom Transfer/Sulfinimine Addition to [1.1.1]Propellane. Organic Letters, 2022, 24, 110-114.	2.4	7
174	Chelation-Controlled Additions to Chiral α- and β-Silyloxy, α-Halo, and β-Vinyl Carbonyl Compounds. Accounts of Chemical Research, 2017, 50, 2389-2400.	7.6	6
175	Chemoselective acylation of <i>N</i> -acylglutarimides with <i>N</i> -acylpyrroles and aryl esters under transition-metal-free conditions. Organic Chemistry Frontiers, 2021, 8, 6344-6349.	2.3	6
176	Rhodiumâ€Catalyzed Direct Arylation of Furopyridine: Synthesis and the Cardiac Effects of Dictamnine Derivatives. Advanced Synthesis and Catalysis, 0, , .	2.1	6
177	Nickel-Catalyzed Oxidative Coupling Reaction of Phenyl Benzyl Sulfoxides. Organometallics, 2018, 37, 3132-3141.	1.1	5
178	α-Branched amines through radical coupling with 2-azaallyl anions, redox active esters and alkenes. Chemical Science, 2022, 13, 3740-3747.	3.7	5
179	The role of intramolecular relaxations on the structure and stability of vapor-deposited glasses. Journal of Chemical Physics, 2022, 156, .	1.2	5
180	An investigation of the binding of (<i>S</i>)-monothioBINOLate to rare earth metal cations. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 624-629.	0.8	4

#	Article	IF	CITATIONS
181	Efficient Synthesis of Bulky 2,2'â€Bipyridine and (S)â€Pyridineâ€Oxazoline Ligands. Advanced Synthesis and Catalysis, 2021, 363, 800-807.	2.1	4
182	Alkenes as Chelating Groups in Diastereoselective Additions of Organometallics to Ketones. Organometallics, 2014, 33, 5371-5377.	1.1	3
183	Ligandâ€Promoted Rh ^I â€Catalyzed C2â€Selective Câ^'H Alkenylation and Polyenylation of Imidazoles with Alkenyl Carboxylic Acids. Chemistry - A European Journal, 2022, 28, .	1.7	3
184	Arylations with nitroarenes for one-pot syntheses of triaryl-methanols and tetraarylmethanes. Organic Chemistry Frontiers, 2022, 9, 3854-3861.	2.3	3
185	Synthesis of Tryptamines from Radical Cyclization of 2-Iodoaryl Allenyl Amines and Coupling with 2-Azallyls. Journal of Organic Chemistry, 2022, 87, 8099-8103.	1.7	3
186	Iron atalyzed Tertiary Alkylation of Terminal Alkynes with 1,3â€Diesters via a Functionalized Alkyl Radical. Angewandte Chemie, 2021, 133, 9792-9797.	1.6	2
187	Palladium-catalyzed enantioselective (2-naphthyl)methylation of azaarylmethyl amines. Organic Chemistry Frontiers, 2022, 9, 2721-2727.	2.3	2
188	Energy-resolved and time-dependent unimolecular dissociation of hydroperoxyalkyl radicals (˙QOOH). Faraday Discussions, 0, 238, 575-588.	1.6	2
189	Enantioselective Addition of Alkynyl Esters and Ethers to Aldehydes Catalyzed by a Cyclopropyl Amino Alcohol Based Zinc Catalyst. Synlett, 2020, 31, 60-64.	1.0	1
190	Frontispiece: Cobaltâ€Catalyzed Enantioselective Negishi Crossâ€Coupling of Racemic αâ€Bromo Esters with Arylzincs. Chemistry - A European Journal, 2018, 24, .	1.7	0
191	Front Cover Picture: An Efficient Route to Isochromene Derivatives via Cascade Radical Cyclization and Radicalâ€Radical Coupling (Adv. Synth. Catal. 18/2019). Advanced Synthesis and Catalysis, 2019, 361, 4147-4147.	2.1	0